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Figure 1. Procession of traditional compression vs CS
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Figure 2. Framework of compressed sensing
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Ph.D. Objective - MSCA Doctoral Networks USES2 - DCO3:
Efficient sensor data acquisition via compressed sensing for
autonomous sensor applications

B We are conducting research as a part of a consortium where the principle is looking for data reduction
methods for acoustic and ultrasonic sensors.

B The crucial question now arises: which measurements are important, and how often should these
measurements be taken. The correct balance creates robust and stable reconstruction with optimizing
the data acquisition.

B The aim of our project is to achieve effective Signal reconstruction from fewer measurements.

B Research Aims and Hypothesis
The issue of the reconstruction is very challenging. In worst case scenario, the computational cost
can be so high that it may cancel the advantages of the low sampling rates, making the CS
approach pointless. The principle idea of this study to reduce CS computational complexity without
compromising the reconstruction quality. The signal reconstruction problem can be reformulated to
achieve this efficient complexity.
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Envelope of learned dictionary [FISTA]

Joint Work with DCO05 °

B We have received 2 datasets from BAM =0

218 11_01_2024 polyamide data
267_16_02_2024 concrete data
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FISTA and OMP are used.

Dictionary learning :
Sparse dictionary learning (also known as sparse coding or
SDL) is a representation learning method which aims at
finding a sparse representation of the input data in the form
of a linear combination of basic elements as well as those
basic elements themselves. 0
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Upcoming Joint Work with DC07

Comparison: Original vs. Stretched Signal 1
Signal 2 with Different Epsilon Values

B We have received 1 datasets from UGE — Sy | =
CWI +NCWI data :
® Current Status E . L.
B Straight Forward
to be investigated more during the secondment T T
Understand how the data are acquired.
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