

Sicherheit in Technik und Chemie

11.04.2017

MEASUREMENT ELECTRONICS AND ELECTROMAGNETIC COMPATIBILITY (EMC) Julius Oeff

www.bam.de

Outline

1. Introduction to Measurement Electronics	3
2. Understanding Multimeters, Oscilloscopes, and ADC's	8
3. Signal Chains in Measurement Electronics	13
4. Sources and Mitigation of Electrical Noise	17
5. Fundamentals of Electromegnetic Complatibility (EMC)	25
6. Designing Measurement Setup /Electronics for EMC Compliance	30
7. EMC Testing and Troubleshooting Techniques	38

19.11.2024 Measurement Electronics and Electromagnetic Compatibility (EMC)

Key components

- 1. transducers / sensor
- 2. data acquisition systems (DAQ)
- 3. signal conditioners

1. Difference of Sensors and Transducers

Sensors:

Responds to some type of input from the physical environment

Transducers:

converts one form of energy to another (temperature, pressure, light, radiation, sound)

*all sensors are transducers, but not all transducers are sensors

Measurement Electronics and Electromagnetic Compatibility (EMC)

2. Importance of measurement systems in electronics

Source: wikipedia.org/wiki/Campbell-Stokes recorder

-Data Acquisition (DAQ)

Analog non electric

Analog electric

Digital electric

19.11.2024

Source:

wikiwand.com/en/articles/Seismometer

6

- 3. signal conditioners
- Operation Amplifier
 A) Single ended Op-Amp
 B) Differential Op-Amp
 C) Transimpedance Op-Amp

Source: Copilot/GPT

Source: Copilot/GPT

Source: Copilot/GPT

1. Multimeters

-Convert electrical values into readable numbers

- -Essential for troubleshooting
- -slow (~ one reading per second)
- -no display of a signal form
- -no storage

Source: Copilot/GPT

Source: Copilot/GPT

2. Oscilloscopes

- Acquire **fast** signal forms at high frequencies
- take a snapshot
- no long-term data acquisition*

Source: Copilot/GPT

3. ADC

Converting analog to digital values, Sampling-rate, bit-depth

- -Sampling-rate: Samples per second
- -Input voltage range
- -bit-depth

Example: 12-bit ADC with 0 to 5 V input range

Resolution of one bit = $\frac{5V}{212}$ = 1,22 mV/bit

3. ADC

Max. Frequency: $\frac{860 \text{ Samples/s}}{2}$ = 430 Hz

Example: ADS 1118

Input range: 0 – 2 V to 5.5 V Input channels: 1-4 Speed(max): 860 Samples per second Bit-depth: 16 bit (2¹⁶)

Interface: SPI

Source: electropeak.com

Resolution(max. input 2 V): $\frac{2V}{216}$ = 30 µV / bit Resolution(max. input 5,5 V): $\frac{5,5V}{216}$ = 84 µV / bit

Source: Copilot / GPT4

Main components in a signal chain:

19.11.2024 Measurement Electronics and Electromagnetic Compatibility (EMC)

Main components in a signal chain:

- -Dose my signal need an amplification?
- -Dose it need to be filtered?
- -Is my measurement a) time or b) frequency sensitive?
 - a) When dose my signal apprear?
 - b) In what freqency range dose my signal appear?
- -Do I capture correct? (Sample-rate, dynamic/range)

4. Sources and Mitigation of Electrical Noise

We want: High signal to noise ratio (SNR)

If we have a high noise level:

- is it static?
- dose it have a shape?
- is it periodic?

--> What is the cause?

4. Sources and Mitigation of Electrical Noise

Sources unwanted noise are mostly acquired through

```
-a) inductive (B-Field)
```

or

-b) capacitive (E-Field) coupling

4. Sources and Mitigation of Electrical Noise

- 2. signal conditioners
- Operation Amplifier
 A) Single ended Op-Amp
 B) Differential Op-Amp
 C) Transimpedance Op-Amp

2. signal conditioners Inductive or capacitive coupling

Operation AmplifierA) Single ended Op-Amp

4. Sources and Mitigation of Electrical Noise

 V_{in}

U(V)

 $V_{out} = -V_{in} \left(\frac{R2}{R1}\right)$

Vcc

R1

t(s)

4. Sources and Mitigation of Electrical Noise

- 2. signal conditioners
- **Operation Amplifier** -A) Single ended Op-Amp

-shielded cable (coax)

Source:

de.wikipedia.org/wiki/Koaxialkabel

 $V_{out} = -V_{in} \left(\frac{R2}{R1}\right)$

4. Sources and Mitigation of Electrical Noise

2. signal conditioners

4. Sources and Mitigation of Electrical Noise

5. Fundamentals of Electromegnetic Complatibility (EMC)

5. Fundamentals of Electromegnetic Complatibility (EMC)

1. Emission Control

Definition: Limiting the amount of EM energy that a device emits.

2. <u>Immunity</u>

Definition: A device's ability to operate correctly in the presence of EM interference (EMI).

3. Grounding and Shielding

Definition: Proper grounding provides a reference point for circuits and helps to dissipating unwanted EM energy. Shielding involving conductive or magnetic materials to block EMI.

5. Fundamentals of Electromegnetic Complatibility (EMC)

1. Emission Control

Definition: Limiting the amount of EM energy that a device emits.

Importance:

Reducing emissions helps prevent interference with other electronic devices and ensures that the device comlies with regulatory standarts.

5. Fundamentals of Electromegnetic Complatibility (EMC)

2. <u>Immunity</u>

Definition: A device's ability to operate correctly in the presence of EM interference (EMI).

Importance:

Ensuring immunity is cruisial for the reliable operation of electronic devices in enviornments with various sources of EMI.

5. Fundamentals of Electromegnetic Complatibility (EMC)

3. Grounding and Shielding

Definition: Grounding provides a reference point for circuits and helps to dissipating unwanted EM energy. Shielding involving conductive or magnetic materials to block EMI.

Importance:

Proper grounding and shielding are essential for protecting sensitive electronic components from external and internal sources of interference.

1. Minimize Loop Areas

Rule: Keep the loop areas of signal and power circuits as small as possible.

- Use proper shielding and grounding
 Rule: Implement effective shielding and grounding techniques.
- Filter power and signal lines
 Rule: Use filters on power and signal lines to suppress unwanted frequencies.

1. Minimize Loop Areas

Rule: Keep the loop areas of signal and power circuits as small as possible.

Because:

Large loop areas act as antennas, increasing the potential for both emitting and recieving EMI's

1. Minimize Loop Areas

Rule: Try to use one power socket for one setup.

Because:

Large loop areas act as antennas.

Use proper shielding and grounding
 Rule: Implement effective shielding and grounding techniques.

Because:

Shielding helps to block external from affecting your circuits, while proper grounding provides a stable reference point for signals and helps to dissipate unwanted EM energy. This is cruical for maintaining signal integrity and reducing noise.

Source: pcbbuy.com

3. Filter power and signal lines

Rule: Use filters on power and signal lines to suppress unwanted frequencies.

Because:

Filters, such as capacitors and inductors, can block high-frequenciy noise from entering or leaving your circuit.

3. Filter **power** and signal lines

Typical Attenuation:

Isolation transformator (1:1)

-Galvanic isolation -reduction of electrical noise -eliminate ground loops

3. Filter power and **signal** lines

7. EMC Testing and Troubleshooting Techniques

7. EMC Testing and Troubleshooting Techniques

Example:

Switching noise showed up on a signal lane.

- Two components used a internal switches. 1. Step-up Converter, 2. Power Supply Unit

7. EMC Testing and Troubleshooting Techniques

7. EMC Testing and Troubleshooting Techniques

Example: Noisy Periodic signal

7. EMC Testing and Troubleshooting Techniques

Example: Noisy Periodic signal

Thank you for your attention!