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Ambient seismic noise
• Ambient seismic noise includes all vibrations produced by naturaland anthropic sources:

 Natural sources: earthquakes, microseisms (ocean waves,
wind, tidal movements, etc.)  f < 1 Hz

 Anthropic sources: train, road traffic, factories, etc.  f > 1Hz
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• Natural seismic sources span between 0.003 Hz and 1.0 Hz, and can be classified as (Tanimoto & Anderson,
2023):

 The hum: background oscillations of the Earth, excited by ocean waves  0.003 Hz – 0.015 Hz
 Primary microseisms: from distant ocean waves interacting with the seafloor  0.05–0.07 Hz
 Secondary microseisms: from the wave-wave interactions in the nearby oceans  0.1 – 0.4 Hz
 Transient phenomena: cyclones, wind-generated ocean waves, tornadoes, etc.  0.3 – 2 Hz

SEASONALVARIATIONS

Tanimoto & Anderson, 2023
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• Anthropic sources generally show a daily/weekly periodicity.
• Traffic is one of the main source of anthropic noise (vehicles, trains, planes, etc.).
• Strong monochromatic noises can be produced by industrial machinery, compressors, pumps, etc.
• Spectrograms (frequency – time diagrams) can help recognizing these noises and their spectral distribution.

Barone et al., 2023
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• Anthropic sources generally show a daily/weekly periodicity.
• Traffic is one of the main source of anthropic noise (vehicles, trains, planes, etc.).
• Strong monochromatic noises can be produced by industrial machinery, compressors, pumps, etc.
• Spectrograms (frequency – time diagrams) can help recognizing these noises and their spectral distribution.

Poli et al., 2020



Active versus passive seismic methods
Passive seismic methods: ambient noiseBARONE I.

ACTIVE PASSIVE
S R R1 R2

• Seismic methods analyse the seismic wavefield to infer the characteristics of the propagation medium.
• Active methods make use of seismic sources such as sledgehammers, weight drops, vibroseis, dynamite, etc.to generate a seismic wavefield at known locations.
• Passive methods analyse the (random) ambient noise wavefield recorded by two stations and reconstructthe Green’s function (impulsive response) between them. SN(t)

time0
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ACTIVE PASSIVE
S R VS1 R2

R1 VS2+
time time0 0

• Seismic methods analyse the seismic wavefield to infer the characteristics of the propagation medium.
• Active methods make use of seismic sources such as sledgehammers, weight drops, vibroseis, dynamite, etc.to generate a seismic wavefield at known locations.
• Passive methods analyse the (random) ambient noise wavefield recorded by two stations and reconstructthe Green’s function (impulsive response) between them.



Passive seismic interferometry
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• Crosscorrelation is the mathematical operation at the base of passive seismic interferometry.
• The cross-correlation measures the similarity between signals, and can be seen as the integral of theproduct of the two functions, where one function is shifted:

By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20206883
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s = δ(t)
Wapenaar et al., 2010

• Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain theGreen’s function between these receivers (Wapenaar et al., 2010).
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s’ = δ(t)

Wapenaar et al., 2010

• Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain theGreen’s function between these receivers (Wapenaar et al., 2010).
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Noise sources are correlated, I havecross-terms (no physical meaning)

Wapenaar et al., 2010

• Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain theGreen’s function between these receivers (Wapenaar et al., 2010).

s = δ(t) s’ = δ(t)
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s = N1(t)

Wapenaar et al., 2010
• Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain theGreen’s function between these receivers (Wapenaar et al., 2010).

𝑆𝑁 𝑡
=  𝑁1 𝑡 ⨂𝑁1 t



Passive seismic interferometry
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s = N1(t) s’ = N2(t)

Noise sources are uncorrelated(N1(t)*N2(t) = 0), no cross-terms! CAUSALACAUSAL

Wapenaar et al., 2010
• Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain theGreen’s function between these receivers (Wapenaar et al., 2010).
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• If the noise sources are distant, uncorrelated and isotropically distributed in azimuth, only sources in theFresnel zones contribute constructively  I can reconstruct the Green’s function!

Wapenaar et al., 2010

WHEN THE NOISESOURCE ILLUMINATIONIS HOMOGENEOUS INAZIMUTH…THE GREEN’S FUNCTIONIS SYMMETRIC!



Cross-correlation function along the diagonal

Passive seismic interferometry – noise source distribution
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Passive seismic interferometry – noise source distribution

vTRUE-vTRUE ???
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100 m

Passive seismic interferometry – noise source distribution

VS

Cross-correlation function filtered at 20 Hz



Passive seismic methods: ambient noiseBARONE I.

• The isotropic distribution of noise sources is hardly met in
nature.

• Directional noise sources cause the asymmetry of
Green’s function, that could bias a later velocity
analysis.

• Some authors have attempted to quantify and correct fortraveltime biases due to uneven source distribution (Delaneyet al., 2017).
• Noise source distribution can be measured through correlationasymmetry (Ermert et al., 2016) or beamforming (Lacoss et al.,1969).

Passive seismic interferometry – noise source distribution

Delaney et al., 2017

BEAMSPECTRUM
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• Wave scattering caused by subsurface heterogeneities naturally redirect the seismic energy in
different directions and partly compensates for this problem (Pedersen and Kruger, 2007; Froment
et al., 2010).

• During processing, several normalizations are applied to each time window (spectral whitening�
one-bit, etc.) before crosscorrelation, in order to remove strong transient signals (Bensen et al.,
2007).

• Positive-lags and negative-lag correlations are also generally averaged.

Passive seismic interferometry – noise source distribution

Bensen et al., 2007
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• The choice of the duration of the noise record is critical.
• Using longer noise series should increase the S/N ratio and compensate for the natural seasonal

fluctuations (Yang and Ritzwoller, 2008; Barone et al., 2024).

Passive seismic interferometry – temporal window

Bensen et al., 2007



Passive seismic interferometry – surface wave velocities
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• In principle, it is possible to reconstruct both bodywaves and surface waves. However, since thesurface wave wavefield is predominant, seismicinterferometry is mostly used to derive surfacewave velocities.
• Surface waves are dispersive: different frequenciessample different portions of the subsoil, thus theytravel with different velocities.

Dispersive propagation

V

f

Dispersion curve
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• In principle, it is possible to reconstruct both bodywaves and surface waves. However, since thesurface wave wavefield is predominant, seismicinterferometry is mostly used to derive surfacewave velocities.
• Surface waves are dispersive: different frequenciessample different portions of the subsoil, thus theytravel with different velocities.

Bensen et al., 2007
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• Two types of surface waves velocities can be measured:
• The phase velocity is the velocity of propagation ofindividual phases
• The group velocity is the velocity of propagation ofthe envelope of the wave.

• For surface waves, phase velocities are generally higherthan group velocities.
• Both phase and group surface wave velocities stronglydepend on the distribution of shear-wave velocity (Vs)with depth.

Passive seismic interferometry – surface wave velocities

https://www.reddit.com/
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Passive seismic interferometry – surface wave velocities
• Several methods are available to derive surface wave velocities:

 The cross-spectra analysis analyses the real part of the cross-spectrum and derives phase velocities
 The Frequency-Time Analysis - FTAN (Dziewonski et al., 1969) allows the computation of groupvelocities

Barone et al., 2024

CROSS SPECTRUM FTAN



Ambient noise tomography
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Planès et al., 2020

• Combination of passive seismic interferometry andsurface wave tomography allows the retrieval ofthe spatial distribution of seismic velocities fordifferent frequencies.
• Depth inversion is then needed to infer shear-wave velocities (Vs) as a function of depth.
• The final 3D Vs model can be used for:

 Earthquake localization
 Structural interpretation
 Identification of buried manufactures
 Etc.
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• Combination of passive seismic interferometry andsurface wave tomography allows the retrieval ofthe spatial distribution of seismic velocities fordifferent frequencies.
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• Combination of passive seismic interferometry andsurface wave tomography allows the retrieval ofthe spatial distribution of seismic velocities fordifferent frequencies.
• Depth inversion is then needed to infer shear-wave velocities (Vs) as a function of depth.
• The final 3D Vs model can be used for:

 Earthquake localization
 Structural interpretation
 Identification of buried manufactures
 Etc.

Planès et al., 2020



Reflected-wave interferometry
Passive seismic methods: ambient noiseBARONE I.

Wapenaar et al., 2010

• Reflections can also be reconstructed through passive seismic interferometry, provided that we have deepnoise sources.
• Crosscorrelation of noise data virtually eliminates the path from the source to the first receiver.

A B A B A B
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• Reflections can also be reconstructed through passive seismic interferometry, provided that we have deepnoise sources.
• Crosscorrelation of noise data virtually eliminates the path from the source to the first receiver.

Wapenaar et al., 2010



Reflected-wave interferometry
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• This method is particularly interesting in the case of single stations: the noise record can be autocorrelated toget the Green’s function at the station location, multiplied by -1.

AUTOCORR

R VS ≡ R

t lag0



Coda-wave interferometry
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• Dynamic analysis can also be performed, in orderto monitor possible changes in the seismicvelocities (coda wave interferometry).
• Cross-correlations are computed for different timeintervals (e.g., on a daily base).
• Possible velocity variations(stretching/compression) are detected in the codaof the cross-correlation.
• NB: The choice for the coda is to get rid of possibleeffects due to the variation of the noise sourcedirectionality!

ε = -dt/t = dv/v
VELOCITY VARIATION:



REAL-CASE STUDIES
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Reservoir scale study – Microseismic monitoring network
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• Micro-seismicity monitoring is key to ensure safe
operations when injecting/producing fluids in the
subsurface.

• It is used to locate seismic/microseismic events in the
vicinity of the reservoirs.

• Common networks include surface, near-surface and
downhole stations, with inter-station distances of a
few to several kilometers.

• A correct location of microseismic events depends
on:

 The number of stations recording the event
 A correct picking of P- and S- phases
 An accurate P- and S-wave velocity model
 The location algorithm used



Reservoir scale study – Microseismic monitoring network
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• While P-wave velocities can be constrained through
reflection seismic, S-wave velocities are difficult to
measure, especially in an intermediate depth range:

 Regional models are generally available from
literature, which are not representative of the local
conditions.

 Well-log data could also be available, but it refers to
single locations and to a limited depth range.

 In absence of any Vs measure, empirical Vp/Vs
relations are used.

• We use the continuous ambient noise data recorded by
micro-seismicity monitoring networks to derive a S-wave
velocity model of the subsurface.



Reservoir scale study – Microseismic monitoring network
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• Permanent local seismic network deployed around a gas storage
site.

• The network is located in an alluvial plane (flat topography).
• The distribution of anthropic noise sources is rather

homogeneous.
• Data from 8 seismic stations: 4 at the surface, 4 in a shallow

borehole (150 m).
• 3-component short period seismometers (1 s).
• Inter-station distances between 2.2 km and 13.5 km.
• Analysis of 2 years of continuous data, only Z component.
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• The noise distribution in time showsdifferent behaviours for different frequencybands:
 Microseismic range (0:1 - 0:25 Hz) seasonality (1 year period)
 Intermediate range (0:25 – 0:5 Hz) 

sparse amplitude peaks, with 2-3
days duration, associated to local
wind-generated sea waves

 Anthropic range (> 0:5 Hz)  weeklypattern
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• Strong seasonal effects are evident inthe secondary microseisms range,where stronger noise is propagatingfrom North-West (Atlantic Ocean)during winter.
• Slight differences are also observable inthe intermediate frequency range,although the general pattern isunchanged.



Reservoir scale study – Microseismic monitoring network
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Reservoir scale study – Microseismic monitoring network
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• The FTAN method has been applied to infer group velocity dispersion curves for all receiver pairs.
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• The analysis of cross-spectra has been applied to infer phase velocity dispersion curves for all receiver pairs.
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• Surface wave tomography has been applied to both group and pahse velocity measures to derive group andphase velocity maps.



Reservoir scale study – Microseismic monitoring network
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• Due to the small lateral variability observed, a 1D Vs velocity profile was derived by jointly inverting all localgroup and phase dispersion curves and averaging them.
• This Vs profile can be used to precisely locate seismic events around the reservoir.



Engineering scale study – the Scrovegni Chapel
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• The Scrovegni Chapel in Padua, with its famous Giotto's fresco cycle, as
been recenty included in the UNESCO world heritage list.

• The chapel is located in a very complex area: remains of different
historical buildings coexist, including a Roman amphitheatre, generating
extremely heterogeneous subsoil conditions.

• Many open questions: the role of the crypt of the chapel, the position of
the radials of the amphitheatre, the possible presence of a gallery along
the major axis of the amphitheatre, etc.

• Both active and passive surface wave analysis has been applied, using a
dense 3D acquisition scheme (almost 1500 seismic nodes!).
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Engineering scale study – the Scrovegni Chapel
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• 1478 single node vertical sensors (Stryde nodes)covering two rectangular areas.
• X and Y spacing inside the amphitheatre: 1:5 m.
• X and Y spacing outside the amphitheatre: 1 m.
• About 22 hours passive+active continuousrecording.
• Active source: weight drop (70 kg from 1.5 m),38 shot positions all around the receivers,covering all azimuths.
• Virtual sources: all receivers at the sides of thetwo rectangles (94 + 128)

ACTIVE
SOURCES
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ACTIVE SHOT RECORD AMBIENT NOISE RECORD
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DAYTIME (1 hour) – 10 Hz
NOISE FROM THEMAIN STREET (N-W)

NIGHT TIME (1 hour) – 10 Hz

PREFERENTIAL NOISEDIRECTION S-E
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PREDOMINANTDAYTIMEDIRECTION (N-W)
22 hours with spectral normalization – 10 Hz

QUASI-ISOTROPICWAVEFIELD
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22 hours – 10 Hz
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Conclusions
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• Passive seismic methods are a cheap alternative or a good complement to active seismic methods.
• The main application of passive seismic methods is the reconstruction of surface waves, for the retrieval of3D Vs models.
• It is also possible to reconstruct reflections and to perform dynamic analysis.
• Pre-requisites are distant uncorrelated sources, with an isotropic distribution in azimuth.
• A good processing should include:

 A preliminary noise characterization
 Time and/or frequency domain normalizations
 Stacking over a sufficiently long period.

… All we have to do is to listen to the Earth!
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Thank you for your attention!
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