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Is monitoring of concrete infrastructure necessary ?

-
- B i

Genoa bridge collapse, August, 2018 s

Robustness of SHM systems

Sensor error/failure

Software problems
Hardware problems

False alarms !

Environmental/operational @
factors
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Environmental factors in SHM

Strategy
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Physical understanding

Do we need to understand the effects to compensate for them ?

15 L

* Depends on type of measurements e Works for all
* Depends on the structure/system

The swiss knife theory

A swiss knife can do a lot of things, but is A cork driver works better to
not the most efficient tool for a specific remove a cork, but cannot be
problem used do much else

General Specific
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Are we using the tool properly ?

Cut cheese ?

* A good understanding of the physics is necessary to choose a specific tool.
» For a generic tool, this might not be necessary

Measurement strategy in SHM

Damage sensors €4 O] do not exist

To

We need to evaluate damage from other measurements

* Vibration features, ultrasonic features, electric
measurements, ...

And to remove environmental trends from damage
indicators

10

10
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Analogy : comfort in houses

Comfort sensor m 07  donotexist
Lo

We need to evaluate comfort from other measurements
*  Temperature

————  But there could be other factors

*  Humidity
* Temp gradients, ... ?

11

11

Does temperature explain it all ?

Ultrasonic measurements in Rogier tunnel
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Does temperature explain it all ?
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. * Location of temperature probe ?
* Other factors ? (humidity, load, ...)
* Material hysteresis ?

13

The relationship is
not “one-to-one”

13

Analogy : temperature regulation in a house

&=
G00db
(O]

m
Where should we measure ?

* [s the temperature uniform in the house?
* Is the heating capability uniform in the house ?
* Single or multiple thermostats ?

14

14
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Analogy : temperature regulation in a house

oy
G00d>

m} ;0
What if the house is filled with water ?

* Isthe regulation law still valid ?

15

15

A cork driver example
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The cork driver for US monitoring of concrete

Two “identical” concrete blocks with
embedded fransducers are put in a climatic
chamber (T° and humidity are controlled)

Constant humidity
(60%)

17

17

The cork driver for US monitoring of concrete

= Block 1 - Emitter side
= Block 1 - Receiver side
= |nside climate chamber
= Block 2 - Receiver side

Temperature (°C)
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There is a fime deloy between the temp curves in the concrete and
in the chamber

18
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The cork driver for US monitoring of concrete

19
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Wave velocity change is
inversely proportional to
temperature change

when humidity is kept
constant

Although the concrete
composition is identical,
and the trend also is, the
magnitude of change is
different

19

The cork driver and the swiss knife

20

* Needtolearna
trend/behavior
between damage
indicator and
environmental factors

»  Will still be specific to
the structure monitored

» Isuseless if youare
missing important
environmental factors
(wrong trend is inferred
from measurements)

20

10
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A swiss knife example

15 accelerometers

* Monitoring over a long period with temperature changes
9 Mode shapes and eigenfrequencies extracted
Samples 1-1880 undamaged, 5 added masses (damage)

22

[ Jyrki Kulloa]

11
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The wooden bridge example

23

The effect of temperature on features is more important than the

effect of damage
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The wooden bridge example

Samples used
to compute [C]

24

‘o: * Statistical analysis

/7

No physical
understanding

Can be applied on any

structure/specimen
Requires a training
period

10°
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Mahalanobis
squared-distance
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structural change
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Methods based on
measurement of
environmental factors

Types of cork drivers

Data driven

Aim: to find a model and its parameters

that can reproduce the relationship between the
EF and the Damage indicators

* Regression analysis
* Neural networks

The model is not known a priori

26

Model driven

Aim: to derive a model from physical knowledge
and to find its parameters

so that the model can reproduce the relationship
between the EF and the Damage indicators

* Analytical models
* Inverse problem

The model is derived from physics

26

13
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Linear regression
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Two concrete blocks example
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* Linear regression not accurate

* Time-dependent regression -
autoregressive models
(ARMAX)

28

Hysteresis
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28
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Polynomial fitting

y X > \
05 ¢ ; [Bishop94]
¥ N=10
0.0 : —
0.0 T o |

29
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Artificial neural networks

Multi-layer perceptron
[Bishop94]

Input layer Hidden layer Output layer

3.0 00 & 80

Figure 4.9. Plot of the ‘tanh’ activation function given by (4.11).

Threshold function
makes the input/output
relationship non-linear

30

30

15
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Artificial neural networks
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Figure 4.11. Approximation of a continuous function f(z) by a linear superpo- Figure 4.9. Plot of the ‘tanh’ activation function given by (4.11).
sition of threshold step functions. This forms the basis of a simple proof that a
two-layer network having sigmoidal hidden units and linear output units can
approximate a continuous function to arbitrary accuracy. [Bl Sh Opg 4]

* The network needs to be trained
» Too many neurons in hidden layer = over-fitting !
31

31

Training, testing, and validation sets

Testing set
10° ‘ | .
v
] Training set
; 10 .

Mahalanopls Threshold Helps to reduce risk
squared-distance -

ol of overfitting

1071

10' : : : : : : : ; ‘

500 1000 1500 2000
Sample

32

32
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Methods not requiring
the measurement of
environmental factors

What is the idea?

Measure multiple features (damage indicators) Y1,Y2,Y3; -

Use correlations to build a subspace including EF

Project damage indicators info orthogonal subspace

Linear methods Non-linear methods

34

34
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Linear methods : a general methodology

| N
@ = i Mean
N
Ccl = N 1Z {y:} — ) Quiy — )" Covariance matrix
i=1
= ({ye} — " 107" Hye) — (o) Mahalanobis squared
distance

[Deraemaeker and Worden, 2018]

35

Spectral decomposition of the covariance matrix

[C1{U;} = a2 {U;} Eigenvalue problem

)" [C][U] = [S] Orthogonality conditions
)" U] = Id

(] =[U][8][U]" Covariance matrix

[C] =[U][S] [U] Inverse of covariance matrix

36

18
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Transformation in the space of independent features

{n:y = [0 {y:} Transformation
m = %Z{m}ﬂb’]ip{y} Mean
[C]n = Z {ni} —{n})( {'rh}_{ﬁ})T
=1 Covariance matrix
= O g X - ) () — D" )
= W' =18

diagonal covariance matrix

37

Transformation and Mahalanobis squared distance

{vi} = U] {n:}
D{=Y %(% — ;) XzA

=1 7

38

19
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Transformation and Mahalanobis squared distance
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39

Transformation and Mahalanobis squared distance

P n

1 ~ 1 _
D= — (nei =) + > —5 (i =1,)"| = Di¢ + Di
'n‘, t=p+l (3

o; isverylarge fori=1..p
 If EF are included in the training
4 / data, the Mahalanobis squared
distance naturally filters these

variations

» This is equivalent fo projection in
the space of minor components
using PCA

X,

\ J

40
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Factor analysis

* Assume a non-linear mapping
between EF and « unobservable

%, nonneo A inear

factors »
Environmental Unobservable Features * Assume alinear mapping between
factors factors « unobservable factors » and
features

* This is equivalent to performing
PCA

41

41

temperature
measurement

* 15 accelerometers

* Monitoring over a long period with temperature changes

* 9 Mode shapes and eigenfrequencies extracted [ Jyrki Kullaal
* Samples 1-1880 undamaged, 5 added masses (damage)

42

21
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The wooden bridge example

43

The effect of temperature on features is more important than the

effect of damage
23.8
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Application of Mahalanobis squared-distance

2000

44

1 N
{v} = NZ{%}
L
€l = 72 Uud - @H dwd - )"

dim of y= 267

N= 300, 1000, 1850

22
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Samples used Samples with
to compute [C] structural change
10}

Mahalanobis

distance N

105 500 1000 1500 2000
Sample
45
Samples used ' Samples with
to compute [C] structural change
10%
Mahalanobis ‘H
distance b
107
10° . : ; ]
0 500 1000 1500 2000
Sample

46
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N=1880

Samples used Samples with
to compute [C] structural change
10°, K -
Mahalanobis  §
distance
10] | ||I w,'m
1
10 ; ; ‘ ;
0 500 1000 1500 2000
Sample

47

Factor analysis and PCA

10°

after PCA
-~ after FA
10°} il
; 10% I
Mahalanobis
squared-distance ¥
10°F
il
R LY
9% 500 1000 1500 2000

Sample 48

48

24
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Equivalence of all methods

—raw data
after PCA
—— after FA

4»
Mahalanobis 1

squared-distance

10°;

49

1000 1500 2000
Sample 49

Linear vs Non-linear methods

Linear methods

* PCA

* Factor analysis

* Mahalanobis squared-
distance

* Low computational cost

* Not restricted to linear
relationship between EF and
features

* Generally requires high-
dimensional feature vector

50

Non-linear methods

Non-linear PCA
Non-linear factor analysis
Auto-regressive neural
networks

High computational cost

Can work with low-dimensional
feature vector

Trial and error to choose the
non-linear model

50

25



Arnaud Deraemaeker : Mitigation of
environmental effects in SHM : part |

Setting thresholds

Normality assumption

Testing set
1 RS Assume that the feature
. vector is multi-normal
10°% - E ;
Training set (gaussian)
Mahalanobis &
squared-distance a Threshold
107, -11
1O SETY IPYYAAOEY MTYNTOY R
e B Y _ .
10 e 7 s
10' : : ‘ : : : : : ' .
0 500 1000 19002000 confidence level = 1/1000
Sample
Fails because is not fitted correctly

52

52
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Extreme value statistics

Testing set

|-
!

Training set

Confidence level = 1/1000

Mahalanobis 19 Threshold
squared-distance

0 500 1000 1500 2000

Sample
Works because the focus is on fitting the tail of the distributions 53
53
54
54
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