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Outline

= Elastodynamic wave equation
= Solutions of wave equation

= Modelling wave propagation
— Linear systems theory
— Numerical modelling
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Wayve theory

= All wave propagation is governed by wave equations
= Solved by appropriate boundary conditions
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Elastodynamic Wave Equation in 1D

= Compression waves in an elastic bar
Q))))
F——>x
— Distance along bar = x, time =t
— Cross sectional area = A, density = p
— Particle displacement = u (x,t)
— Axial force (tension is positive) = F(x,t)

S

~———

= Consider a small length of bar at an
instant in time:
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Elastodynamic Wave Equation in 1D

= Force equilibrium
— Net force on element to right

(F + 0F)—F =0F
— Mass of element = pAdx (mass conserved)
2
— Acceleration Of element — % (higher order terms ignored)
t
— Newton’s second law
0211
6F = IOA(SX—Z
ot
—and also
SE = JF Sy (assumes Ox is small)
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Elastodynamic Wave Equation in 1D

= Elasticity
— Hooke’s Law for bar relates stress, o, to strain, €, and Young’s modulus, E

O = E€ (linear stress-strain relation assumed)
— Strain displacement relationship
&u (small strains assumed)
£ =—
ox
— Hence force and displacement related by
Ju
F=A0 = AEe¢ = AE—
ox
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Elastodynamic Wave Equation in 1D

= From previous slides we have

2,
oF = pAéxa oF = géx F = AE@

012’  ox ox

(equilibrium) (elasticity, stress-strain)

» Combine these

0 Ju J%u
AE Ox = pAd
&x( é’x) ALY o2
= and simplify
2 2
r Jeu  Jdcu
Ix? ot?
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Elastodynamic Wave Equation in 3D

= Same principle can be used to derive 3 coupled PDEs for displacement
components, 1, v and w, in x, y and z in isotropic elastic solid

*u _(A+ ) 8u &’v Jw . 2%u s %u . %
a2 T\ o Ty T ez ) T o o2 922
&2

——(A ) (o"u dv 8w)+ 820+820+5’20
ot? 2 dy\dx dy oz : ox?  Jdy* 97
P w (4 ) (au v é’w)+ (82w+82w+82w)
o “ 52\ ox dy 0Jz ox2 Iy 922

where A and u are Lamé constants are alternative way of writing elastic properties
Ev E
where E is Young's modulds anq y i Polisspn)$ r%tloz (1+v)
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Elastodynamic Wave Equation in 3D

— Tensor notation for anisotropic elastic solids

]

8t2 2 Y 33(?1'
where cijkl is stiffness tensor (tensor representation of anisotropic equivalent of Young's
modulus and Poisson’s ratio)

Note: again there will be 3 PDEs (for j = 1,2,3) and Einstein convention implies summations over
all possible combinations of i, k and [ (i.e. 3x3x3=27 terms in each PDE if written out in full!)

Fui 1 J (Jdup
T2, 4 2%
dx;  odxy

= General form of wave equation is always

[density] x [second derivative w.r.t. time] = [stiffness] x [second derivative w.r.t.
space]
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Solution of Wave Equation

= Wave equation is second order PDE which in 1D looks like this

= To solve it for a particular situation means finding a displacement
field that satisfies:

1. The wave equation (i.e. the above PDE)
2. The appropriate boundary conditions

= Analytical solutions that satisfy 1 and 2 only possible in limited
cases

= Modal solution of 1 enables possible wave modes to be identified
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Solution of 1D Wave Equation

= First consider 1D wave equation for waves in a bar:

fr(x—ct)att =t
&’Zu 821/1 j/>x\/f;x—ct) att =t + At

&_tz: dx2

= The general solution to this can be written (proof on next slide)

u(xt) = fr(x—ct) + f (~x—ct)

wherefrand fp are arbitrary functions and represent wave shapes that propagate without distortion
in the forwards and backwards directions respectively, and c turns out to be wave velocity
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Solution of 1D Wave Equation

— Proof that solution works:

02 ou 7/ 7/ :
— fF (x Ct) 4+ fB ( X— Ct) Use of chain rule
Jx?
du 2 /7 7/ Use of chain rule
Er ik [fF" (e=ct) + fB"" (=x—ch)]
t
which obviously satisfies something in same form as wave equation:
82 0%u
— 2
&’tz Jx?
— Compare with wave equation to find Wave velocity always has this general
E relationship to material properties:
€= E square root of stiffness over density
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Solution of 3D Wave Equation

= Modal solution

= The two wave modes
— Longitudinal (or compression or pressure), velocity c;

Particle motion (u)
> —>

— Transverse (or shear), velocity ¢t (or cg)

Particle motion (u)
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Solution of 3D Wave Equation

= Some typical wave velocities

Steel

Aluminium
Wave mode (E =210 MPa, v =0.3, | (E =70 MPa, v =0.33,

=2,700 kg m™
0 = 7,800 kg m ™) > gm ™)

E 1 |

Bar — 5,189 ms 5,092 ms
E(1-
Longitudinal bulk / — (“\,f) — 6,020 ms™! 6,236 ms™!

E
Shear bulk / R 3,218 ms™* 3,118 ms™!
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Satistying Simple Boundary Condition

= Superposition
—The wave equation is linear hence if f1 and f, are two solutions then f; + f, is also
a solution

— Real problems are solved by combining simple solutions to satisfy the necessary
boundary conditions

= Boundary conditions
— Wave equation governs what goes on within the material
— Solutions must satisfy this and what goes on at the edges

— Examples
> No displacement if soft material has a rigid boundary (1 = 0)
> No stress on a free surface (e.g. du/dx = 0)
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Satistying Simple Boundary Condition

= Boundary condition example - waves in bar with freeend at x =0
— Solution for wave in bar has this form:

u (x,t) = Aellkx-wh) 4 Bei(-kx-wi)
— Stress 0 = E¢ anywhere in bar is:
o (x,t) = ikEAe' k-t _jkF Bei(-kx-wi)
— The stress at free end (x = 0) is zero

o(x =0,t) =ikE(A-B)e ™t =0
— Therefore A =B
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Satistying Simple Boundary Condition

— Hence final solution (in terms of displacement) is:
u(x,t) =A [ei(kx—wt) n ei(—kx—a)t)] ~ A [eikx n e—ikx] p—iwt

> Physically it is two waves going in opposite directions with the same amplitude - one is the
reflection from the end

— Above expression can be expanded to show that the result is a standing wave:
u(x,t) =2A cos(kx) e '@t

— And the stress is |
o (x,t) = —2AEk sin (kx) e7"!

> Note stress is maximum where displacement is minimum and vice versa
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More complex boundary conditions

= Acoustic waves in a solid medium with boundaries

(e.g. plates, pipes, rods etc)

— Energy of wave guided by the boundaries of the structure, hence terms guided

wave and waveguide

— Dispersion curves: (1 mm thick steel plate)

Extensional

_ Flexural
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Key relationships and dispersion curves

= Example phase velocity dispersion curves
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Key relationships and dispersion curves

= Example group velocity dispersion curves
— Note no velocity exceeds bulk longitudinal wave velocity

Bulk longitudinal velocity
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Key relationships and dispersion curves

= Mode names

— For flat plates modes are classified as symmetric (S) or antisymmetric (A)
depending on their mode shape

— Modes of each type numbered with subscripts starting at zero
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Key characteristics relevant to us

= Complications
—Multiple modes - signals can be hard to interpret
—Multiple directions of propagation cf. bulk wave testing
—Dispersion - pulses distort and lengthen as they propagate
—Interaction with defects harder to quantify
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How can we model these systems

Can’t carry out all the experiments we would like and need to demonstrate
understanding of overall physics and behaviour of system

= Analytic models
= Numerical models
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Analytic models

= In 2D and 3D there are exact solutions for certain specific cases, for
example
— Fields from point and line sources in infinite media
— Plane waves obliquely incident on interfaces
— Fields from simple transducer shapes in infinite media
— Scattering of incident plane waves by simple defect shapes
— 2D modal solution to propagation in an infinitely long flat plate (Lamb waves)

= But there is no general exact solution for arbitrary boundary conditions
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Analytic models

= Modular approach

— Break the system down into parts and model each part separately, e.g.
> Beam profile from transducer
> Interaction of plane waves with defect
> Interaction of plane waves with boundaries

— This is a good approach if interactions between different parts of system can be
ignored (e.g. multiple scattering)
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Linear Systems Modelling

= Propagation of ultrasound through any structure can be thought of as system with transfer

function

Uin (t) ***F

The system Uoyt (1)
—>
h(t) [W‘ NWW
\

\

Transfer Function (impulse response in time-domain)

— Transfer function describes everything that happens in the system
> Transmitter characteristics, wave propagation, scattering, reflections, attenuation, receiver characteristics etc.
— In time-domain, output signal for given input is obtained by convolution
0
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Linear Systems Modelling

= In the frequency-domain, convolution is equivalent to multiplication

Uout (t)

Uin (1) % The system
h(t)

Forward Inverse
Fourier Fourier
Transform Transform

—/\ The system J‘L Uyt (@) = U, () H (w)
\ ' g —>»

H (w)

uin (w)
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Typical Ultrasonic Transfer Functions, H (w)

= Transfer function is sum of transfer functions for each ray path from transmitter to
receiver

H(w) =2 Hi(w) TX Rx
j

= For each ray path, transfer function typically looks like

Hj(w) =Ty (@) A(w) BX (@) A (@) Ry (@)

= where
— T, (w) is the transmitting transducer characteristics
— A(w) is attenuation
— B is beam spreading
— X (w) is the product of reflection and transmission coefficients encountered along ray path
— A (w) is the time-delay due to propagation
— R, (w) is the receiving transducer characteristics
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Typical Ultrasonic Transfer Functions, H (w)

= Transducer characteristics, T, (w) and R, (w)

— If same transducer is used for transmission and reception T, (v) = R, (w)
— Behaviour of most transducers can be approximated as product of two effects:

I'y(w) = I(w) D (@,0)

where I (w) is the transducer frequency response characteristic, and D (w,0) is the transducer directivity
function which describes the transmitted amplitude (or reception sensitivitv) to ravs as a function of ray angle 6

45

Amplitude
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Typical Ultrasonic Transfer Functions, H (w)

= Propagation term, A (w), for non-dispersive wave propagation

— Non-dispersive wave propagation means that the received signal is just a delayed copy of
the input signal

N ﬁ/w Uin (1)
Af J\/\Wﬂt (1) =t (t-1)

where T = d/c where d is propagation distance and c is speed of sound
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Typical Ultrasonic Transfer Functions, H (w)

A

Fourier transform property of delayed signal: 1
if 7{g(t)} = G (w) then F{g(t-7)} = G (w) 7" .
%2}
=
— Here the time delay due to propagation 373
over distance d is T = d/c, hence s 3 Frequency. o >
A(a)) — e—ia)T — e—ia)d/c — e—ikd N
: : ©
— Note A (w) does not modify amplitude Q2
S~ R
o < >

spectrum; it only modifies the phase
Te—la)’f — 1

since |A(w)| = Frequency, @
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Typical Ultrasonic Transfer Functions, H (w)

= Propagation term, A (w), for dispersive wave propagation
— In some systems (e.g. guided waves) wave velocity is frequency dependent, i.e. ¢ = c(w)
— Hence signal distorts as it propagates as different frequencies travel at different velocities

% u, (1)

uout(t)

— This means A (@) = e"@d/c(@) = p=ik(w)d
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Numerical models

= The only general way to predict
what h.aploens in any system is by
numerical modelling

= Discretisation of complete system
into mesh
— Finite difference method
— Finite element (FE) method
— Finite integration method

= Discretisation of system
boundaries only into mesh

— Boundary element method

> More efficient than FE but more
mathematical and less widely used:;
lack of commercial codes
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Numerical models

* Finite element modelling

— Probably most widely used numerical
method

— Numerous commercial packages
available (Abaqus, Ansys etc.)
— Fairly intuitive
> Usually performed in time-domain

> Sound propagates through mesh like in
real structure
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Examples of current modelling

= Full FE model

= 45degree bulk
waves interacting
with surface-
breaking crack
— 40 ps step time

— ~ 5.5 million
elements

— ~ 60 s per model

80 mm

bristol.ac.uk ndtatbristol.com



Examples of current modelling

= Full FE model

= Bulk waves in curved
composite showing
anisotropic behaviour
— 2 us step time
— ~ 1.2 million elements
— ~ 3 s per model
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Conclusions

* Fundamental theory and mathematics relatively straightforward
= Complexity grows very quickly
= Waves in bounded media can be very complex

= Modelling vital to support understanding
— Analytical models, good and fast but ultimately only as good as assumptions
— Numerical models increasingly used, often don’t help understanding
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