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Wave Propagation
Theory
Derivation and general form of wave equation
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Outline
 Elastodynamic wave equation
 Solutions of wave equation
 Modelling wave propagation

– Linear systems theory
– Numerical modelling
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Wave theory
 All wave propagation is governed by wave equations
 Solved by appropriate boundary conditions
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Elastodynamic Wave Equation in 1D
 Compression waves in an elastic bar

– Distance along bar = 𝑥, time = 𝑡
– Cross sectional area = 𝐴, density = 𝜌
– Particle displacement = 𝑢 𝑥,𝑡
– Axial force (tension is positive) = 𝐹(𝑥,𝑡)

 Consider a small length of bar at aninstant in time:

𝑥
𝛿𝑥

𝑥 𝑥 + 𝛿𝑥

𝑢 𝑢 + 𝛿𝑢

𝐹 𝐹 + 𝛿𝐹
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Elastodynamic Wave Equation in 1D
 Force equilibrium

– Net force on element to right
𝐹 + 𝛿𝐹 −𝐹 = 𝛿𝐹

–Mass of element = 𝜌𝐴𝛿𝑥
– Acceleration of element = 𝜕2𝑢

𝜕𝑡2

– Newton’s second law
𝛿𝐹 = 𝜌𝐴𝛿𝑥 𝜕

2𝑢
𝜕𝑡2

– and also
𝛿𝐹 = 𝜕𝐹

𝜕𝑥
𝛿𝑥

𝐹 𝐹 + 𝛿𝐹

𝛿𝑥(mass conserved)
(higher order terms ignored)

(assumes 𝛿𝑥 is small)
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Elastodynamic Wave Equation in 1D
 Elasticity

– Hooke’s Law for bar relates stress, 𝜎, to strain, 𝜀, and Young’s modulus, 𝐸
𝜎 = 𝐸𝜀

– Strain displacement relationship
𝜀 = 𝜕𝑢

𝜕𝑥

– Hence force and displacement related by
𝐹 = 𝐴𝜎 = 𝐴𝐸𝜀 = 𝐴𝐸𝜕𝑢

𝜕𝑥

(linear stress-strain relation assumed)

(small strains assumed)
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Elastodynamic Wave Equation in 1D
 From previous slides we have

𝛿𝐹 = 𝜌𝐴𝛿𝑥 𝜕
2𝑢
𝜕𝑡2

,  𝛿𝐹 = 𝜕𝐹
𝜕𝑥

𝛿𝑥,  𝐹 = 𝐴𝐸𝜕𝑢
𝜕𝑥

 Combine these
𝜕
𝜕𝑥

𝐴𝐸𝜕𝑢
𝜕𝑥

𝛿𝑥 = 𝜌𝐴𝛿𝑥 𝜕
2𝑢
𝜕𝑡2

 and simplify
𝐸𝜕2𝑢
𝜕𝑥2

= 𝜌𝜕
2𝑢
𝜕𝑡2

(equilibrium) (elasticity, stress-strain)
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Elastodynamic Wave Equation in 3D
 Same principle can be used to derive 3 coupled PDEs for displacementcomponents, 𝑢, 𝑣 and 𝑤, in 𝑥, 𝑦 and 𝑧 in isotropic elastic solid

𝜌 𝜕
2𝑢
𝜕𝑡2

= 𝜆 + 𝜇 𝜕
𝜕𝑥

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

+ 𝜇 𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

+ 𝜕2𝑢
𝜕𝑧2

𝜌 𝜕
2𝑣
𝜕𝑡2

= 𝜆 + 𝜇 𝜕
𝜕𝑦

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

+ 𝜇 𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

+ 𝜕2𝑣
𝜕𝑧2

𝜌 𝜕
2𝑤
𝜕𝑡2

= 𝜆 + 𝜇 𝜕
𝜕𝑧

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

+ 𝜇 𝜕2𝑤
𝜕𝑥2

+ 𝜕2𝑤
𝜕𝑦2

+ 𝜕2𝑤
𝜕𝑧2

where 𝜆 and 𝜇 are Lamé constants are alternative way of writing elastic properties
𝜆 = 𝐸𝜐

1 + 𝜐 1−2𝜐
,  𝜇 = 𝐸

2 1 + 𝜐where 𝐸 is Young’s modulus and 𝜐 is Poisson’s ratio
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Elastodynamic Wave Equation in 3D
– Tensor notation for anisotropic elastic solids

𝜌
𝜕2𝑢𝑗
𝜕𝑡2

= 1
2
𝑐𝑖𝑗𝑘𝑙

𝜕
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑙

+ 𝜕𝑢𝑙
𝜕𝑥𝑘where 𝑐𝑖𝑗𝑘𝑙 is stiffness tensor (tensor representation of anisotropic equivalent of Young’smodulus and Poisson’s ratio)Note: again there will be 3 PDEs (for 𝑗 = 1,2,3) and Einstein convention implies summations overall possible combinations of 𝑖, 𝑘 and 𝑙 (i.e. 3x3x3=27 terms in each PDE if written out in full!)

 General form of wave equation is always[density] x [second derivative w.r.t. time] = [stiffness] x [second derivative w.r.t.space]
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Solution of Wave Equation
 Wave equation is second order PDE which in 1D looks like this

𝜌 𝜕
2𝑢
𝜕𝑡2

= 𝐸𝜕2𝑢
𝜕𝑥2

 To solve it for a particular situation means finding a displacementfield that satisfies:1. The wave equation (i.e. the above PDE)2. The appropriate boundary conditions
 Analytical solutions that satisfy 1 and 2 only possible in limitedcases
 Modal solution of 1 enables possible wave modes to be identified
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Solution of 1D Wave Equation
 First consider 1D wave equation for waves in a bar:

𝜌 𝜕
2𝑢
𝜕𝑡2

= 𝐸𝜕2𝑢
𝜕𝑥2

 The general solution to this can be written (proof on next slide)
𝑢 𝑥,𝑡 = 𝑓𝐹 𝑥−𝑐𝑡 + 𝑓𝐵 −𝑥−𝑐𝑡

where𝑓𝐹 and 𝑓𝐵 are arbitrary functions and represent wave shapes that propagate without distortionin the forwards and backwards directions respectively, and 𝑐 turns out to be wave velocity

𝑓𝐹(𝑥−𝑐𝑡) at 𝑡 = 𝑡1 + ∆𝑡

𝑓𝐹(𝑥−𝑐𝑡) at 𝑡 = 𝑡1

𝑥
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Solution of 1D Wave Equation
– Proof that solution works:

𝜕2𝑢
𝜕𝑥2

= 𝑓𝐹′′ 𝑥−𝑐𝑡   + 𝑓𝐵′′ −𝑥−𝑐𝑡

𝜕2𝑢
𝜕𝑡2

= 𝑐2 𝑓𝐹′′ 𝑥−𝑐𝑡 + 𝑓𝐵′′ −𝑥−𝑐𝑡

which obviously satisfies something in same form as wave equation:
𝜕2𝑢
𝜕𝑡2

= 𝑐2 𝜕
2𝑢

𝜕𝑥2

– Compare with wave equation to find
𝑐 = 𝐸

𝜌

Wave velocity always has this generalrelationship to material properties:
square root of stiffness over density

Use of chain rule
Use of chain rule
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Solution of 3D Wave Equation
 Modal solution
 The two wave modes

– Longitudinal (or compression or pressure), velocity 𝑐𝐿

– Transverse (or shear), velocity 𝑐𝑇 (or 𝑐𝑆)

Particle motion (𝐮)

Particle motion (𝐮)
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Solution of 3D Wave Equation
 Some typical wave velocities

Wave mode Equation

Steel

(𝐸 = 210 MPa,  𝜈 = 0.3,
𝜌 = 7,800 kg m−3)

Aluminium
(𝐸 = 70 MPa,  𝜈 = 0.33,

𝜌 = 2,700 kg m−3)

Bar 𝐸
𝜌

5,189 ms−1 5,092 ms−1

Longitudinal bulk 𝐸(1−𝜐)
𝜌(1 + 𝜐)(1−2𝜐)

6,020 ms−1 6,236 ms−1

Shear bulk 𝐸
2𝜌(1 + 𝜐)  3,218 ms−1 3,118 ms−1
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Satisfying Simple Boundary Condition
 Superposition

– The wave equation is linear hence if 𝑓1 and 𝑓2 are two solutions then 𝑓1 + 𝑓2 is alsoa solution
– Real problems are solved by combining simple solutions to satisfy the necessaryboundary conditions

 Boundary conditions
–Wave equation governs what goes on within the material
– Solutions must satisfy this and what goes on at the edges
– Examples

 No displacement if soft material has a rigid boundary (𝑢 = 0)
 No stress on a free surface (e.g. 𝑑𝑢/𝑑𝑥 = 0)
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Satisfying Simple Boundary Condition
 Boundary condition example – waves in bar with free end at 𝑥 = 0

– Solution for wave in bar has this form:
𝑢 𝑥,𝑡 = 𝐴𝑒𝑖 𝑘𝑥−𝜔𝑡 + 𝐵𝑒𝑖 −𝑘𝑥−𝜔𝑡

– Stress 𝜎  =  𝐸𝜀 anywhere in bar is:
𝜎 𝑥,𝑡 = 𝑖𝑘𝐸𝐴𝑒𝑖 𝑘𝑥−𝜔𝑡 −𝑖𝑘𝐸𝐵𝑒𝑖 −𝑘𝑥−𝜔𝑡

– The stress at free end (𝑥 = 0) is zero
𝜎 𝑥 = 0,𝑡 = 𝑖𝑘𝐸 𝐴−𝐵 𝑒−𝑖𝜔𝑡 = 0

– Therefore 𝐴 = 𝐵
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Satisfying Simple Boundary Condition
– Hence final solution (in terms of displacement) is:

𝑢 𝑥,𝑡 = 𝐴 𝑒𝑖 𝑘𝑥−𝜔𝑡 + 𝑒𝑖 −𝑘𝑥−𝜔𝑡 = 𝐴 𝑒𝑖𝑘𝑥 + 𝑒−𝑖𝑘𝑥 𝑒−𝑖𝜔𝑡

 Physically it is two waves going in opposite directions with the same amplitude – one is thereflection from the end
– Above expression can be expanded to show that the result is a standing wave:

𝑢 𝑥,𝑡 = 2𝐴 cos 𝑘𝑥 𝑒−𝑖𝜔𝑡

– And the stress is
𝜎 𝑥,𝑡 = −2𝐴𝐸𝑘 sin 𝑘𝑥 𝑒−𝑖𝜔𝑡

 Note stress is maximum where displacement is minimum and vice versa
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More complex boundary conditions
 Acoustic waves in a solid medium with boundaries

(e.g. plates, pipes, rods etc)
– Energy of wave guided by the boundaries of the structure, hence terms guidedwave and waveguide
– Dispersion curves: (1 mm thick steel plate)
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Key relationships and dispersion curves
 Example phase velocity dispersion curves
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Key relationships and dispersion curves
 Example group velocity dispersion curves

– Note no velocity exceeds bulk longitudinal wave velocity

Gr
ou

p
ve

loc
ity

(m
m

m
s-1

)
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Key relationships and dispersion curves
 Mode names

– For flat plates modes are classified as symmetric (S) or antisymmetric (A)depending on their mode shape
–Modes of each type numbered with subscripts starting at zero
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Key characteristics relevant to us
 Complications

–Multiple modes – signals can be hard to interpret
–Multiple directions of propagation cf. bulk wave testing
–Dispersion – pulses distort and lengthen as they propagate
– Interaction with defects harder to quantify
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How can we model these systems
Can’t carry out all the experiments we would like and need to demonstrateunderstanding of overall physics and behaviour of system
 Analytic models
 Numerical models
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Analytic models
 In 2D and 3D there are exact solutions for certain specific cases, forexample

– Fields from point and line sources in infinite media
– Plane waves obliquely incident on interfaces
– Fields from simple transducer shapes in infinite media
– Scattering of incident plane waves by simple defect shapes
– 2D modal solution to propagation in an infinitely long flat plate (Lamb waves)

 But there is no general exact solution for arbitrary boundary conditions
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Analytic models
 Modular approach

– Break the system down into parts and model each part separately, e.g.
 Beam profile from transducer
 Interaction of plane waves with defect
 Interaction of plane waves with boundaries

– This is a good approach if interactions between different parts of system can beignored (e.g. multiple scattering)
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Linear Systems Modelling
 Propagation of ultrasound through any structure can be thought of as system with transferfunction

– Transfer function describes everything that happens in the system
 Transmitter characteristics, wave propagation, scattering, reflections, attenuation, receiver characteristics etc.

– In time-domain, output signal for given input is obtained by convolution
𝑢𝑜𝑢𝑡 𝑡 = 𝑢𝑖𝑛⨂ℎ 𝑡 =

∞

−∞
𝑢𝑖𝑛 𝜏 ℎ 𝑡−𝜏 𝑑𝜏

ℎ 𝑡
The system

Transfer Function (impulse response in time-domain)

𝑢𝑜𝑢𝑡 𝑡𝑢𝑖𝑛 𝑡
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Linear Systems Modelling
 In the frequency-domain, convolution is equivalent to multiplication

ℎ 𝑡
The system 𝑢𝑜𝑢𝑡 𝑡𝑢𝑖𝑛 𝑡

𝐻 𝜔
The system

ForwardFourierTransform
InverseFourierTransform
𝑈𝑜𝑢𝑡 𝜔 =𝑈𝑖𝑛 𝜔 𝐻 𝜔

𝑈𝑖𝑛 𝜔
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Typical Ultrasonic Transfer Functions, 𝐻 𝜔
 Transfer function is sum of transfer functions for each ray path from transmitter toreceiver

𝐻 𝜔 =
𝑗
𝐻𝑗 𝜔

 For each ray path, transfer function typically looks like
𝐻𝑗 𝜔 = 𝑇𝑥 𝜔 𝐴 𝜔 𝐵𝑋 𝜔 ∆ 𝜔 𝑅𝑥 𝜔

 where
– 𝑇𝑥 𝜔 is the transmitting transducer characteristics
– 𝐴 𝜔 is attenuation
– 𝐵 is beam spreading
– 𝑋 𝜔 is the product of reflection and transmission coefficients encountered along ray path
– ∆ 𝜔 is the time-delay due to propagation
– 𝑅𝑥 𝜔 is the receiving transducer characteristics

Tx Rx



ndtatbristol.combristol.ac.uk

Typical Ultrasonic Transfer Functions, 𝐻 𝜔
 Transducer characteristics, 𝑇𝑥 𝜔 and 𝑅𝑥 𝜔

– If same transducer is used for transmission and reception 𝑇𝑥 𝜔 = 𝑅𝑥 𝜔
– Behaviour of most transducers can be approximated as product of two effects:

𝑇𝑥 𝜔 = 𝐼 𝜔 𝐷𝐹 𝜔,𝜃

where 𝐼 𝜔 is the transducer frequency response characteristic, and 𝐷𝐹 𝜔,𝜃 is the transducer directivityfunction which describes the transmitted amplitude (or reception sensitivity) to rays as a function of ray angle 𝜃

𝐼 𝜔 𝐷𝐹 𝜔,𝜃
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Typical Ultrasonic Transfer Functions, 𝐻 𝜔
 Propagation term, ∆ 𝜔 , for non-dispersive wave propagation

– Non-dispersive wave propagation means that the received signal is just a delayed copy ofthe input signal

where 𝜏 = 𝑑/𝑐 where 𝑑 is propagation distance and 𝑐 is speed of sound

𝑢𝑖𝑛 𝑡

𝑢𝑜𝑢𝑡 𝑡 = 𝑢𝑖𝑛 𝑡−𝜏

𝜏
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Frequency, 𝜔Pha
seo

f
∆

𝜔

Typical Ultrasonic Transfer Functions, 𝐻 𝜔

– Here the time delay due to propagationover distance 𝑑 is 𝜏 = 𝑑/𝑐, hence
∆ 𝜔 = 𝑒−𝑖𝜔𝜏 = 𝑒−𝑖𝜔𝑑/𝑐 = 𝑒−𝑖𝑘𝑑

– Note ∆ 𝜔 does not modify amplitudespectrum; it only modifies the phasesince ∆ 𝜔 = 𝑒−𝑖𝜔𝜏 = 1

Frequency, 𝜔Mo
dulu

sof
∆

𝜔

1Fourier transform property of delayed signal:
ifℱ 𝑔(𝑡) = 𝐺 𝜔 then ℱ 𝑔(𝑡−𝜏) = 𝐺 𝜔 𝑒−𝑖𝜔𝜏
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 Propagation term, ∆ 𝜔 , for dispersive wave propagation
– In some systems (e.g. guided waves) wave velocity is frequency dependent, i.e. 𝑐 = 𝑐(𝜔)
– Hence signal distorts as it propagates as different frequencies travel at different velocities

– This means ∆ 𝜔 = 𝑒−𝑖𝜔𝑑/𝑐(𝜔) = 𝑒−𝑖𝑘 𝜔 𝑑

Typical Ultrasonic Transfer Functions, 𝐻 𝜔
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Numerical models
 The only general way to predictwhat happens in any system is bynumerical modelling
 Discretisation of complete systeminto mesh

– Finite difference method
– Finite element (FE) method
– Finite integration method

 Discretisation of systemboundaries only into mesh
– Boundary element method

 More efficient than FE but moremathematical and less widely used;lack of commercial codes
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Numerical models
 Finite element modelling

– Probably most widely used numericalmethod
– Numerous commercial packagesavailable (Abaqus, Ansys etc.)
– Fairly intuitive

 Usually performed in time-domain
 Sound propagates through mesh like inreal structure Scattering of

Lamb waves
from a crack
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Examples of current modelling
 Full FE model
 45degree bulkwaves interactingwith surface-breaking crack

– 40 μs step time
– ~ 5.5 millionelements
– ~ 60 s per model

30
mm

80 mm
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Examples of current modelling
 Full FE model
 Bulk waves in curvedcomposite showinganisotropic behaviour

– 2 μs step time
– ~ 1.2 million elements
– ~ 3 s per model
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Conclusions
 Fundamental theory and mathematics relatively straightforward
 Complexity grows very quickly
 Waves in bounded media can be very complex
 Modelling vital to support understanding

– Analytical models, good and fast but ultimately only as good as assumptions
– Numerical models increasingly used, often don’t help understanding


