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Machine Learning
General Information

Presenter: Prof. Giovanni Del Galdo
Electronic Measurements and Signal Processing (TU lImenau)
Electronic Measurements and Signal Processing Department (Fraunhofer IIS)

Inputs and Sources
* Presentations and webinars from my co-authors:
Florian Romer, Steffen Schieler, Sebastian Semper, Christopher Sobel, Nicolas Witt n VOUTUhe

[MIT] Introduction to Deep Learning | 6.519 @MIT
I I I H

http://introtodeeplearning.com

» [HAI] https.//aiindex.stanford.edu/wp-content/uploads/2024/05/HAI _Al-Index-Report-
2024.pdf
e  https://ourworldindata.orqg/qrapher/test-scores-ai-capabilities-relative-human-performance

»  https://epochai.org/trends#investment-trends-section
e chatGPT4o0, DALL-E
«  Youtube: 3Bluel1Brown, Steve Brunton, Sabine Hossenfelder
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Machine Learning S iy
General Information and scope |

e If you have a question, feel free to interrupt!

What to expect?
« Get a rough idea about how DL works, and how we got to LLM

» Get an overview on selected trends in research and industry

« Understand the main problems we need to solve in ML, and which risks to mitigate

« Speculate with me in which direction the future will bring us
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Al, ML and DL

Terminology
Deep Learning
m.
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Al, ML and DL

Intelligence

= What is intelligence?

Intelligence: the ability to process information which will
inform future decision-making abilities

In the context of Al: The capability of a machine to
perform tasks that would require intelligence if done by
humans. These tasks include learning, reasoning, problem-
solving, perception, and language understanding.

m.
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Al, ML and DL

Machine Learning

= What is intelligence?
= What is machine learning?
The science which studies how to make machines make

predictions or take decisions based on data without being
explicitly programmed to perform specific tasks

m.
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Al, ML and DL

Machine Learning

Data Answers

Features & Rules (color)

A — Cherry

O — Orange

\/ N

Traditional Programming Machine Learning

| |

; — Cherry

Answers Q Orange P Features /
g Model —> Orange

/,:

3 B — Cherry

— QOrange
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Al ML a nd DL Low Level Features Mid Level Features High Level Features
 J

Machine Learning

Lines & Edges Eyes & Nose & Ears Facial Structure

Source [MIT]

= What is the advantage of learning features instead of programming them explicitly?
= Less human effort
= Scaling
= High dimensional data becomes treatable
= Robustness
= Works better
= Generalizable

m.
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Al, ML and DL

Deep Learning

= What is intelligence?
= What is machine learning?

= What is deep learning?

m.
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Machine learning
Classical taxonomy, not so useful anymore

Machine Learning
Supervised Unsupervised Reinforcement
Learning Learning Learning

» (Classification «  Clustering (K-Means) * Reaction to environment
* Regression * Principal Component » Sequential Decision Making
* Support Vector Analysis (PCA)

Machines * Autoencorders
» Decision Trees « Self-supervised learning
* CNN (typically)
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Reinforcement Learning

L earning through interaction

Actiona € A .

States € S Environment
Reward r
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Unsupervised Learning
Mainly Clustering

Goal: Find patterns in data

= Simplify data

= Segmentation, compression

Example Segmentation:

= Customer Data

Which 3 main types of customers do we have?
What else buy customers typically?
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Supervised Learning
Function Estimation/Approximation

Given:
= Data: Many examples of input x and output y

Unknown:
= Functionx -y
= Qutput y for new input x

___________________

X _>E f (x) :,_> y
7 —
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Supervised Learning
Classification & Regression

Classification

Output: Discrete Class / Category / Discrete State ! |

Regression
Output: Continuous Value roT oo |
x=—s  f(xX) =y
Lo g
7% —
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Some History

Chatbot ELIZA IBMs DeepBlue AlexNet Alphafald
Theseus 1 gl
First digital Stanford Cart
computers _ :
'Computer plays checkers
ot [ © o6 s &% &
‘ |
v |v ¥ » ¥ | 4 v S .
| | | >
1950 1960 1970 1980 1990 2000 2010 2020
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Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

Hardware

Funding

Page 16

Algorithms and Software
= Commercial interest (covers HW, training and inference costs)

Big data availability and trends in open science

} = Availability of compute

Stochastic Gradient

Why Now?

Neural Networks date back decades, so why the dominance?

V9 Descent
osa || Perceptron |. Big Data 2. Hardware 3. Software
® leamitieVews * Larger Datasets * Graphics * Improved
. * Easier Collection Processing Units Techniques
¢ & Storage (GPUs) * New Models
1986 Backpropagation . Masswgly ¢ Toolboxes
+  Multi-Layer Perceptron Parallelizable
, IMJ5AGE
1995 Deep Convolutional NN P
» Digit Recognition ;.p) Ko ?
A AL D
: < L,‘-“l'.! x
. o AN s Tensorflow
i = o e
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Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

Hardware

Funding
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Big data availability and trends in open science

Algorithms and Software } " Availability of compute

= Commercial interest (covers HW, training and inference costs)

Stochastic Gradient

1952
Descent

Perceptron
1358 * Learnable Weights
.
.
.
1986 Backpropagation

*  Multi-Layer Perceptron

1995 Deep Convolutional NN
* Digit Recognition

Why Now?

Neural Networks date back decades, so why the dominance?

|. Big Data 2. Hardware

* Larger Datasets * Graphics
* Easier Collection Processing Units
& Storage (GPUs)
* Massively

Parallelizable

IMJSGE

WikiPEDIA
e e Lot

3. Software

* Improved
Techniques
* New Models

* Toolboxes

TensorFlow

e Massachusotts
L [T

1184 ‘
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Datasets

VA SCOHLWN~O
DAd AN b -0
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MNIST

BLASTNet

WIKIPEDIA

The Free Encyclopedia

ImageNet

= Why make a dataset publicly available?

Recognition and impact

Grant requirements

Incentivize R&D for one specific problem
Citations!
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Challenges and Benchmarks

[HAI]: Harder benchmarks emerge. Al models have reached performance saturation on established benchmarks such as ImageNet, SQUAD, and
SuperGLUE, prompting researchers to develop more challenging ones. In 2023, several challenging new benchmarks emerged, including SWE-bench
for coding, HEIM for image generation, MMMU for general reasoning, MoCa for moral reasoning, AgentBench for agent-based behavior, and
HaluEval for hallucinations.

Task

Tested Concepts

100

GPT-4 (few=shot)e——=e

“Abstract Algebra
Anatomy

Astronomy

Business Ethics

Clinical Knowledge
College Biclogy

College Chemistry
College Computer Seicnce
College Mathematics
College Medicine

College Physics
Computer Security
Conceptual Physics
Econometrics

Electrical Engineering
Elementary Mathematics
Formal Logic

Global Facts

High School Biology
High School Chemis

try
High School Computer Science

High School Gov't and Politics

High School Macroeconomics
High School Mathematics
High School Microeconomics
High School Physics

High School Psychology

High School World History
Human Aging

‘Human Sexuality
International Law
Jurisprudence

Logical Fallacies

Machine Learning
Management

Marketi

Medical Genetics

Profesional Paychology
Public Relatior

Security Studies
Socioloy

US Foreign Policy
Virology

World Religions

Groups, rings, fields, vector spaces, ..
Central nervous system, circulatory system, ..
Solar system, galaxics, asteroi
Corporate responsibility, stakeholders, regulation, ..
Spot diagnosis, joints, abdominal examination, ...
Cellular structure, molecular biology, ecology,
Analytical, organic, inorganic, physical, ...
Algorithms, systems, graphs, rocursion, ...
Differential equations, real analysis, combinatorics, ..
Introductory biochemistry, sociology, reasoning, ...
Electromagnetism, thermodynamics, special relativity, ..
Cryptography, malware, side channels, fuzzing,
Newton's laws, rotational motion, gravity, sound,
Volatility, long-run relationships, forecasting
Circuits, power systems, clectrical drives, ...
Word problems, multiplication, remainders, rounding, ...
Propositions, predicate logic, first-order logic,
Extreme poverty, literacy rates, life expectanc
Natural selection, heredity, cell cycle, Krebs cycle, ...
Chemical reactions, ions, acids and bases, ...
Arrays, conditionals, iteration, inheritance, ..
Renaissance, reformation, industrialization,
Population migration, rural land-use, urban processes, ...
Branches of government, civil liberties, political mcnlng;m -
Economic indicators, national income, international
Pre-algebra, algebra, trigonometry, calculus,
Supply and demand, imperfet competition, market failure, .
nematics, energy, torque, fluid pressure,
Behavior, personaity, emotions, learning,
Random variables, sampling distributions, chi-square tests, ...
Civil War, the Great Depression, The Great Society, .
Ottoman empire, economic imperialism, World War I,
Senescence, dementia, longevity, personality changes,
Pregnancy, sexual differentiation, sexual orientation, ...
Human rights, sovercignty, law of the sea, use of force, ...
Natural law, classical legal positivism, legal realism,
No true Scotsman, base rate fallacy, composition fallm:y,
SVMs, VC dimension, deep learning architecture
Organizing, communication, organizational mecmlv:, -
Segmentation, pricing, market research,
Genes and cancer, common chromosome disorders, ..
Agriculture, Fermi estimation, pop culture, .
Freedom of speech, addiction, the death penalty, ..
Detecting physical violence, stealing, externalitics, ...
Metabolism, water-soluble vitamins, diabetes, .
Skepticisn, phronesis, skopticism, Singer's Drowning Child, ...
Neanderthals, Mesoamerica, extinction, stone tools, ...
Auditing, reporting, regulation, valution,
“Torts, criminal law, contracts, property, evidence, ...
Diagnosis, pharmacotherapy, disease prevention, ...
Diagnosis, biology and behavior, lifespan development, .
Midia theory, crisis management, intelligence gathering,
Environmental security, terrorism, weapons of mass destruction, .
Socialization, cities and community, inequality and wealth, ...
Soft power, Cold War foreign policy, isolationism, ..

Judaism, Christianity, Islam, Buddhism, Jainism, ...

Supercategory
STEM

STEM
STEM
Other
Other

St . Flan-U-PaLM 5408
EJE: Chinchilla?.(S =shot)
s Gopher 280B,(5-shot)

50 UnifiedQA 11B

Social Sciences

Social Sciences

Social Sciences
TEM

g
AVERAGE (%)

Social Sciences
STEM

Social Sciences
STEM

RoBERiTa-base 125M (fine-tuned)
./

Humanities
Humanities

Other
Social Sciences 2 5
nities

e 2020 2021 2022 2023 2024

Social Sciences

Other models - Models with highest Average (%)

er
Humanities

https:/paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
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Table 2: Summary of all 57 tasks.
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Notable AI Models

Training dataset size (words)
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® Deep Learning Era
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Publication date
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Projections of the stock of public text and data usage Z EPOCH Al

Effective stock (number of tokens)

Estimated stock of human-
generated public text; 95% Cl........ o rrmemrmmmmmsemsemsmmsrmsrmssmssss s
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Datasetsizesused totrain " T
notable LLMs; 95% ClI \ Mamas™
e R ) W
L e ) RX ~2028
--------------- Median date of full
"""""""""""" stock use; 80% CI
1012 _____________
. ~2027
GPT-3 Median date with 5x
10M L overtraining; 80% CI
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Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

= Big data availability and trends in open science

= Hardware

= Algorithms and Software

= Awe-inspiring results

= Commercial interest (covers HW, training and inference costs)

= Funding

Page 22

} = Availability of compute

Stochastic Gradient

Why Now?

Neural Networks date back decades, so why the dominance?

V9 Descent
osa || Perceptron |. Big Data 2. Hardware 3. Software
® leamitieVews * Larger Datasets * Graphics * Improved
. * Easier Collection Processing Units Techniques
¢ & Storage (GPUs) * New Models
1986 Backpropagation . Masswgly ¢ Toolboxes
+  Multi-Layer Perceptron Parallelizable
, IMJ5AGE
1995 Deep Convolutional NN P
» Digit Recognition ;.p) Ko ?
A AL D
: < L,‘-“l'.! x
. o AN s Tensorflow
i = o e
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Open Science?

=  Why open science?

Faster innovation

Safety and trust

Maximizing the use of research data
Democratizing access to knowledge

= Why do large companies like open science?

Page 23

Faster innovation

Safety and trust

Establish de facto standards
Establish large communities
Talent recruitment and acquisition

MONEY!

The SPIRIT
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Business Models for Al

Acronym ... as a Service
SaaS Software...
PaaS Platform...

laaS Infrastructure. ..
DaaS Data...

Page 24

Companies offer ML-powered
applications as subscription-based
services over the internet.

(also APIl-based services)

Providing a cloud-based platform that
allows customers to build, deploy, and
manage ML applications.

Offering raw computational
infrastructure that can be used to run
ML workloads.

Selling access to curated datasets or
data streams that can be used for ML
model training and analytics.

ChatGPT, Microsoft365

Google Cloud Al,
Microsoft Azure ML

Amazon AWS,
Microsoft Azure

Nielsen for consumer
behavior data
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Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

Why Now?

Big data availability and trends in open science

. Hardyvare - Availability of compute \A Neural Networks date back decades, so why the dominance?
= Algorithms and Software 1952 || Stochastic Gradient
C . | . HW . d . 'l: Descent
n .
om merC|a Interest (COVQI’S , tralnlng ana inrerence COSTS) e —— l. Blg Data 2. Hardware 3. Software
. FUﬂdIﬂg ® LeamableWeights * Larger Datasets * Graphics * Improved
. * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation * Massively * Toolboxes
*  Multi-Layer Perceptron Parallelizable
. IMJ&GE
1995 Deep Convolutional NN R
* Digit Recognition ;-r". - '*A‘ 5 @x ?
. .) g
. b e AR TensorFlow
vV
|'|il= — © itrotoceepieamingeom . ¥ @MTDespLeaming s |
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The problem of scaling

= Scaling UP = Scaling OUT

(7% —
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Notable Al Models https://epochai.org/data/notable-ai-models ? EPOCH Al

Training compute (FLOP)
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Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

Why Now?

Big data availability and trends in open science

. HardV\{a re - Availability of compute \A Neural Networks date back decades, so why the dominance?
= Algorithms and Software 1952 || Stochastic Gradient
. . . . Descent
. CommerC|aI interest (covers HW, training and inference costs) P |.BigData  2.Hardware 3. Software
. FUﬂdIﬂg ® LeamableWeights * Larger Datasets * Graphics * Improved
. * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation * Massively * Toolboxes
*  Multi-Layer Perceptron Parallelizable
, IMJ&GE
1995 Deep Convolutional NN R
* Digit Recognition ;.r‘. IR ?
. .) g
. b e AR TensorFlow
N4
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Software and Algorithms

e 0
& DACPUTING

PLATFORMS
BB - ~

ﬁﬂl'uuliil\

I

= Software Frameworks:
= TensorFlow: Developed by Google, now including the Keras API
= PyTorch: Developed by Meta
= Apache MXNet: Supported by Amazon

il'll

= Sharing/ Compute / Discussion Platforms:
= Kaggle: Owned by Google
= Hugging Face: Includes Model Hub and Dataset Hub.
= GitHub: Owned by Microsoft.
= Google Colab: Cloud-based Jupyter notebooks with free GPU/TPU access

= Breakthrough algorithms developments:
= Transformers, BERT, GAN, Self-supervised learning, etc. -> ~3x training efficiency gain / year

h.
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Estimates of algorithmic progress in different software domains

Effective compute doubling time (months)

100

50

20

10

Our result

Large language
models

—+— Qur result

—&— Reported estimate range

Z EPOCH Al

- - = Moore’s law doubling time

| Ku;l:);;al., ________ -
Fichte et al.,
Y 2020
Bixby, 2002 o
Hernandez
and Brown,
2020 g
Erdil and
Besiroglu,
2022
Linear SAT Solvers Computer
Programs Vision

Erdil et al.,
forthcoming

Stockfish

(Computer chess)

Domain

Dorner, 2021

Atari
(Deep RL)

A M

p 1B

Sherry and
Thompson,
2021

Avg of 57
textbook
algorithms

Dorner, 2021
Dorner, 2021

State-based Pixel-based
control control
(Deep RL) (Deep RL)



Introduction
Why now?

= The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So... why now?

Why Now?

Big data availability and trends in open science

= Hardware - Availability of compute \A Neural Networks date back decades, so why the dominance?
= Algorithms and Software 1952 || Stochastic Gradient
. . . . . Descent
= Commercial interest (covers HW, training and inference cost ol Pecepter |.BigData  2.Hardware 3. Software
. Funding ® LeamableWeights * Larger Datasets * Graphics * Improved
. * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation * Massively * Toolboxes
*  Multi-Layer Perceptron Parallelizable
, IMJAGE
1995 Deep Convolutional NN P
» Digit Recognition e il 5 @ ?
. .) g
. o R AN ey TensorfFlow
v {
=, o T -
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Al Economy

Page 32

1. Generative Al investment skyrockets. Despite a decline in overall Al private investment last year,
funding for generative Al surged, nearly octupling from 2022 to reach $25.2 billion. Major players in the generative
Al space, including OpenAl, Anthropic, Hugging Face, and Inflection, reported substantial fundraising rounds.

2. Already a leader, the United States pulls even further ahead in Al private investment.

In 2023, the United States saw Al investments reach $67.2 billion, nearly 8.7 times more than China, the next
highest investor. While private Al investment in China and the European Union, including the United Kingdom,
declined by 44.2% and 14.1%, respectively, since 2022, the United States experienced a notable increase of 22.1%
in the same time frame.

[HAI]
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Training Cost

Amortized hardware and energy cost to train frontier Al models over =~ Z EPOCH Al
— time

Cost (2023 USD, log scale) — Regression mean 95% Cl of mean Using estimated cost of TPU
B
100M - Gemini 1.0 UItra\
GPT-4
PaLM (540B)
10M \
GPT-3 175B (davinci)
™ - AlphaGo Master AlphaGo Zero Inflection-2
AlphaZero
100k GNMT /
\ DALL-E
10k
2.4x/year
1000 -
100 -
10 | 1 I I | | I | |
2016 2017 2018 2019 2020 2021 2022 2023 2024
Publication date
https://epochai.org/data/notable-ai-models
7% —
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US Military Spending

= “The total that the DoD might spend on Al-related contracts if each contract were extended to its fullest terms grew even faster, from $269 million in the
period leading up to August 2022 to $4.3 billion in the period leading up to August 2023. ”, The U.S. Military’s Investments Into Artificial Intelligence Are
Skyrocketing”, Time Magazine, March 2024

= Strategic relevance of Al?
= Situational awareness and intelligence
= Autonomous systems
= Cybersecurity
= Logistics

S
\
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Private Investment

Global corporate investment in Al by investment activity, 2013-23
Source: Quid, 2023 | Chart: 2024 Al Index report

100
79.62 36.43
53.72
50
25.43 3382 24.68 431 58.18
14.57 19.04 - -
: 25.72
— e B

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

[HAl] Figure 4.3
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|
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3
i
©°
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>
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=
g 150 80.61
£
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[
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=
R

m.
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Industry dominates Al research

Page 36

Machine Learning Models, by Sector
®Nonprofit @®Industry-academia collaboration @Research collective @Academia @ Industry

40
30

20

10 '\

Source: Epoch, 2022, via the 2023 AI Index Report

S
\
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The main ideas of DL
The perceptron

source: adapted from MIT

The Perceptron: Forward Propagation

Linear combination
Output of inputs

Wm
5 — 7 i

Xm y=g(wo+X"W)
X1 Wi

Inputs  Weights Sum  Non-Linearity Output where: X = | ¢ |andW = |
X m Wm

= mm  Massachusetts MIT Introduction to Deep Learning
IIII I ;:::,‘.‘:,'.?,:: @ introtodeeplearning.com W @MITDeeplearning L

= To discuss: dimensionality reduction — latent space — modeling and understanding; non-linearity
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Introduction
Why non-linearity?
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Introduction
Why non-linearity?

Network of any complexity = Simplest linear circuit
with linear components
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Introduction
Why non-linearity?

- ; 2 : : !z e RELU - . 33,,"&312
Complex behavior %% & id_j, o; G,E,. .,)Wll—.s;,, é)[o_ng ) %
(i.e., non-linear) e A} oyl Do o N qigm
Yo oY) o @D o- ) .gmoh%m E%
a ? o snsg;hél 75
> S~ ED O t' &P
[l : : t sng;moh . .S|annh)
b @) @ ke e
O I 0 0 . o .
nn |n reLU V agnoh? 9 >
OB = .'. % .,,\@5“
| _'_ﬁ,'.; f,.'. E'” : TN:ITANH CNe
. . 9 S28 -z =27 sil-e SIGMOI J
Network with non-linear
components
lexpressiveness
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

feature space

\,_.

0SF 0SF

“w

08 08

07 07F

~

06 06

oS oS

04 04

Linear activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions

m—

| I 1 I SR e~ MIT Introduction to Deep Learning
II r.d,..‘:,.?m @ introtodeeplearning.com W @MITDeeplearning

1/8/24



The Perceptron: Forward Propagation

Activation Functions
1
y = g( Wo +XTw )

W/. z pr—— f 5; * Example: sigmoid function
X2

Wi giz)=o0(z)= 1+1e_2
1- o
X /
05
Inputs  Weights Sum  Non-Linearity Output /
6 w4 2 0z 4 & Z
hir e MIT Introduction to Deep Learning

Tarhnnlanu

@ introtodeeplearning.com W @MITDeeplearning 1/8/24



Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 r - — 1 . - ' — ‘ ] 5 r - - n
0.8 | g!(zz)}_ 1 05 | 393} - | g!{zz))
0.
0.4 27
aal | -0.5 | |
ol S " J -1 - " ol k — —
-5 0 5 -5 0 5 -5 0 5
1 e*—e~*
9z)=1"-=F 9(z)= 7= g(z)=max (0, z)
1 z>0
r — Py ! — =t 2 ’ - ’
g (z)=g=)1-g(2) g (z)=1-g(2) g (z) {0, othoralsa

I tf math sigmoid (z) '? tf math.tanh(z) l:' tf . nn.relu(z)

'" TensorFlow code blocks NOTE: All activation functions are non-linear

I W mm  Massachusetts MIT Introduction to Deep Learning
I I Institute of

Tachnaloav @ introtodeeplearning.com @MITDeeplearning |/8/24




Neural Networks

Single Layer Multiple Layers
X1
-
x2 X LR X X LI X
A . %
) o
Inputs Hidden Output
inputs hidden layers outputs fully connected layers
(/%
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Importance of the Architecture: Emergence

= The architecture at large scales might play a much bigger role to determine behavior compared to the individual components

Example 1: op-amp with feeback loop

\g T ~> 0 V,.‘g )Vbx
4 j/ s ol +
1

-
—

Vol = 4 AV Vo= V)

S
\
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Importance of the Architecture: Emergence

= The architecture at large scales might play a much bigger role to determine behavior compared to the individual components

Example 1: sum of random variables 4 ——
20 Xy =
(\
20X =
A AN
o — Tt [ !z &
(\
DXy ——=
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Emergence of complexity

= A system composed of simple components exhibits behaviors and
properties that are not apparent from the individual components
alone.

= The idea is closely related to the separation of scales in physics

= Example: School of fish / flock of birds

Page 47

Separtation of Scales Separation of scales

o » and emergent behavior

Alignmient Alignntion, p' % Ecberestic
. . 13 W77 .
P, Coteision co\eslon o Separa

S e
e mp )28
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Universal Approximation Theorem (UAT)

The universal approximation theorem states, that a feed-forward network constructed of
artificial neurons can approximate arbitrary well a real-valued continuous function.

f(x)... function to approximate.

F(z) = Z vip(w! 4 b;)

=1

e > |F(x)— f(x)] for e >0
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Training

Source: adapted from [MIT]

— Empirical Loss

The empirical loss measures the total loss over our entire dataset

f(x) y

= = Zy B _ _
4,5 o1 [
= |2 | 0.8 0
S Zy 51 '
5 8 0.6 |
P X2 : :
| = 2 - i

iRl . :
e T JW) =2y L(f(xO W),y )

* Cost function 1=1

*  Empirical Risk Predicted Actual
;I ER . " MIT Introduction to Deep Learning _—
@l*ﬁh y @ introtodeeplearningcom W @MITDeeplearning
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Training

— Loss Optimization

We want to find the network weights that achieve the lowest loss

1o . -
W* = argmin— E L(f(xD;w),y®)
w n i=1

W* = argmin J(W)
w

J!I R C— MIT Introduction to Deep Learning /814
@lm A, @ introtodeeplearningcom W @MITDeeplearning
7% —
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Training

— Gradient Descent
gradielt Repeat until convergence
update step: j
)
WeW-=1n"w

learning rate

Bs7s,0@Emn@O

Problem: what if we get stuck in a local minimum? -> SGD, MBGD

7% —
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Training

= Learning rate too small = Learning rate too large = Optimally adaptive
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Momentum and adaptive learning rates

Page 53

Example: Adam Optimizer

Adam (Adaptive Moment Estimation) combines momentum and adaptive learning rates:

. First Moment (Mean): m; = ymy; 1 + (1 — 51)V f(6;)

Second Moment (Uncentered Variance): v; = Bov; 1 + (1 — B2)(V f(6;))?

Bias Correction:

Parameter Update:

Tty
ﬁf—E

o Oi1 =06 —«a

Key Benefits

Faster Convergence: Momentum accelerates gradient vectors in the right directions, leading to

faster converging.
Stability: It reduces oscillations and helps in smooth convergence.

Adaptability: Adaptive learning rates adjust to the optimization landscape, ensuring more

efficient learning.
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Training

Source: 3Blue1Brown: https://www.youtube.com/watch?v=Illg3gGewQ5U

OOO000O000O

_VO(...) =

b 0.10
All weights :

Q000000000000 000
o[0]0[0]0]0]0]0]6]0]6]0]0)6]0)6)

Q000000 -

and biases

Nudge this weight

H— -+
D e——

o & o REARE & &
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Training

Computing Gradients: Backpropagation

W1 W
% bz, ey ) s (W

ow) _ow) 0oy 9z
awl aj\’ azl awl

| AutoDiff keeps a computational

graph d u-— Massachusetts MIT Introduction to Deep Learning

@ introtodeeplearningcom W @MITDeeplearning 173/24
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Fitting

Page 56

The Problem of Overfitting

o
a . a
[#]
0 a®
5 o
a® »
Underfitting 4—— [deal fit —— Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well
mmm  Massachusetts MIT Introduction to Deep Learning
IIIII }'.':::,'.‘:;,z;’; @ introtodeeplearningcom W @MITDeeplearning it
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Bias-Variance Tradeoff

Total Error

Optimum Model Complexity

Total Error = Bias? + + Irreducible Error

Error

Model Complexity

= Bias: here it is intended as the error from model mismatch introduced by approximating a
real-world problem, which may be extremely complex, by a much simpler model.

= Variance: here refers to the error introduced by the model's sensitivity to the specific training data.
A model with high variance pays too much attention to the training data, including the noise, and performs well on training data
but poorly on unseen data (overfitting).

= Irreducible error: Noise inherent in the problem itself.
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Regularization

source: adapted from [MIT]

Regularization |: Dropout
* During training, randomly set some activations to O
v \ ¥ Z31q
X1
Y Z1- ¥ » yl
X2
* 9,
X3 >
il iiss” ® votocespeamngeom W @MTDespeamig a2
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Regularization

Training

Validation

Test

Page 59

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

Bias-variance tradeoff

source: adapted from [MIT]

Legend
Loss Testing
Training
: I
Training Iterations
= mm  Massachusetts MIT Introducti Learni
Ju“nm @ invotodeepleamacom W @MTDecpLeaming /8124
(/% —
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Sequential Data

= \ery often data is sequential
in nature, e.q., text, audio,
ECG, etc.

Page 60

Sequence Modeling Applications

X

One to One
Binary Classification

]

“WIill | pass this class?
Student => Pass?

Many to One
Sentiment Classification
b Ivar Hagendoorn
The @MIT Introduction to #Deeplear ) is

definitely one of the best courses of its kind
currently available online

L

Bg DO Do

Many to Many

One to Many
Machine Translation

Image Captioning

W mm Massachusetts
I I Institute of
Technoloav

MIT Introduction to Deep Learning
@ introtodeeplearning.com

The SPIRIT  TECHNISCHE UNIVERSITAT

1/8/24

W @MITDeeplearning
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Recurrent Neural Networks (RNN)

Neurons with Recurrence

input
veztor Xt X0 X1
Vi, = h
Ve = f(xt, ht—q1)
output input  past memory
i o™ & iistnmcianon RO sk

Page 61

The SPIRIT  TECHNISCHE U
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source: adapted from [MIT]

output yt
vector 3

recurrent cell

I

Xt

hy

input
vector

m.
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Recurrent Neural Networks (RNN)

RNN State Update and Output

output vector yt Output Vector
A T
1 YE= Whyht
Update Hidden State
RNN r r
ht ht = tanh(Whhht_l + thxt)
Input Vector
input vector Xt xt
Illil- EEEZ‘Z'EE?M @ introtoger!e'pjlr;::\?:gc.zfr:to [?’eeg@lr-'ﬁ?rrlgregpmaming Wi

h’
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Recurrent Neural Networks (RNN)

RNNs: Computational Graph Across Time

- Forward pass .

= Problems with backprop: Lo Ly L, Ls
= gradients exploding t t t t

= gradients vanishing Ve Yo 1 V2 “an Ve

Xt X X1 X2 Xt
= Massachusetts MIT Introduction to Deep Learning
@l;’é‘@:ﬂ‘::&b @ introtodeeplearningcom W @MITDeeplearning S
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Problems with RNN

= |t is difficult for RNNs to learn from long sequences because the necessary information cannot be effectively propagated
through many time steps.
(exploding and vanishing gradients)

= Difficult to parallelize given the step-by-step nature of the inference

= Relatively small size hidden layers limit the amount of information (features of the data) which can be stored

Solutions:

= Gated Recurring Units (GRU)
= Long Short-Term Memory

= Transformers
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Long Short-Term Memory

LSTMs: Key Concepts

= One solution: |

= Introduce gated cells:
= Input gate 2. Use gates to control the flow of information

Maintain a cell state

= Forget gate * Forget gate gets rid of irrelevant information
= Qutput gate . . :

PUt9 * Store relevant information from current input
* Selectively update cell state

* Output gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient flow

@l;‘l WS Massachusetts MIT Introduction to Deep Learning /8124

élmhﬂ‘:.‘:bﬁ,:é) @ introtodeeplearningcom W @MITDeeplearning

m.
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Attention is all you need - Self-attention Head

Alice noticed the beautiful painting.

Page 66

Learning Self-Attention with Neural Networks

Goal: identify and attend to most Last step: self-attend to extract features

important features in input. \"4
x . = .

|. Encode position information

2. Extract query, key, value for search
3. Compute attention weighting Attention Value Output
weighting
4. Extract features with high attention Q- KT
softmax - -V =A(Q,K,V)
scaling
MilmsiEs @ iitodecsieaminacom. . W GMTDesplearion Vasuani NeuPS 2017, 1824

7% —

The SPIRIT  TECHNISCHE UNIVERSITAT % Fraunhofer

of science ILMENAU
‘ s



Attention is all you need - Self-attention Head

Page 67

Learning Self-Attention with Neural Networks

-~

é )
Goal: identify and attend to most i, Mgt _
important features in input. P
*
.rs . . Scale
|. Encode position information ¥
MatMul
2. Extract query, key, value for search Query — T T Ky Vol
3. Compute attention weighting — —
4. Extract features with high attention
These operations form a self-attention head \_ Positional Encoding )
that can plug into a larger network. Q-KT
Each head attends to a different part of input. softmax . =¥
scaling
M | | iy B ST it Vaswani+, NeurlP$ 2017, 1/8/24
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Key Advantages of Self-attention

= For each input (e.g. word) we have a context (e.g., which other word are relevant) -> reveals the relationships
between inputs

= Allows for parallelization (also in the training)

= Long dependencies / input sequences
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Large Language Models — Status Quo

Self-attention -> transformers -> LLMs

/ LARGE ARGE IDDE
4 LARGE LANGUAGE LANGU_AGj -~
LANGUAGE e MODEL o . wHEL -

E
MODEL =i ‘_} : . °§ -
ff.';‘.:..:.,;:_‘____'é- . WY ‘;, ’a -
@30 f’ =y

e O
2 e
LARGE LARG% i"
LANGUAGE LANGUAGE
MODEL MODEL
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Notable AI Models Z EPOCH Al

Number of trainable parameters

1e12 % @ ® s
GShard (dense) @ PaLM(540B)® @ @ © o
®9 ¢ o §
1e1 o s £eos e °8
o o oo %ok o} e
o
© S © ogese © !
1€10 ® ° o ® 0 ®BoPoem g, 00 & ‘3!’.‘——"
0 o _ —so- @
© Seq2SeqlLSTM e . ® e - ® .. _‘ ‘qc > o .
169 . o® o® Lo ° o of " 2800 0 S o
® aé o GNMT @ @ cor _.‘_a’ 1:0 e 8, .00. W o "
= S o SNt 0 %3%e eS8 ° 0o RRe S w0 o o
G0 Zer = &
ReLU (NORB) N ® & o _ o ‘ - 8 00‘“’." Sy (W) e ®  Mamba-24M (SC09) @
o © ® DOT(S)}-RNN ™ = ° ® © e ® O
Te7 o ® - o® o e © 8 e o o
@ @ .._ i ) Qo . & ® O &
-8 - Big-Little'Net (speech)' ®
P s Robot Parkour @
O @ ®)
1e5 @
o ® )
le4 s e
1e3
1e2
1el Deep Learning Era
2010 2071 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Publication date CC BY Epoch Al



Test scores of Al systems on various capabilities relative to human

performance

Within each domain, the initial performance of the Al is set to -100. Human performance is used as a baseline, set to zero.
When the Al's performance crosses the zero line, it scored more points than humans.

Al vs Homo Sapiens

|
20 — Reading comprehension with
/ | unanswerable questions
~ Reading comprehension
__||* Image recognition
0 Human:performancezas:the o5 set-o- — /|~ Language understanding
- Nuanced language interpretation
Handwriting recognition
Speech recognition
-20 Predictive reasoning
General knowledge tests
Math problem-solving
Code generation
-40 .
Complex reasoning
-60
-80
-100 The capability of each-Al systefn is-normalized-to an initial-pérformante o¥-180
I | I | I I
1998 2005 2010 2015 2020 2023
Data source: Kiela et al. (2023) OurWorldInData.org/artificial-intelligence | CC BY
Note: For each capability, the first year always shows a baseline of -100, even if better performance was recorded later that year.
7% —
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Using images from Flaticon.com. Alan D. Thompson. April 2023. https: Iifearc'hitectai

Selected highlights only. Sources: Original papers and Dr Jason Wei's summary: https:

BIG-bench ="

&

S GPT-313B,
PaLM 8B
Mod.Arithmetic*

GPT-31758,
M LaMDA 1378, X
PaLM 64B, q

Chinchilla 7B LinguisticsPuzzles*

L PaLM 5408,
Chinchilla 70B

GeometricShapes*

X L ng-lr-\-lr‘:l' (est.) n

College-LevelExams

Next...

Grounding

LifeArchitect.ai/models

Debugging*

EmojiMovie*

Proverbs*

Long-HorizonPla

Comprehension*

GRE-Comprehension®

f A-A

PhoneticAlphabet-

)A

-—

MetaphorUnderstanding*

LogicalDeduction®



2023 CONTEXT WINDOWS (MAX IN/OUT LENGTH)

Infinite context windows: |
StreamingLLM/RNNs |

Claude 2 200k

GPT-4 128k
Claude 2 100k
Gemini (estimate)

GPT-4 32k

Grok-1 8k

PaLM 2 8k

Llama 2 4k

ChatGPT 4k

200k tokens / 150k words / 300 pages
128k tokens / 96k words / 192 pages
100k tokens / 75k words / 150 pages

32k tokens / 24k words / 48 pages

32k tokens / 24k words / 48 pages
8k tokens / 6k words / 12 pages
8k tokens / 6k words / 12 pages

4k tokens / 3k words / 6 pages

4k tokens / 3k words / 6 pages

100 200 300

Using rounded figures of 1 token = 0.75 words (e.g. 32,000 tokens = 24,000 words), 500 words = 1 page. Alan D. Thompson. November 2023. https://lifearchitect.ai/models/

& LifeArchitect.ai/models



Training Compute

Page 74

The rise of artificial intelligence over the last 8 decades: As training R
. . . In Data
computation has increased, Al systems have become more powerful

The color indicates the domain of the Al system: ®Vision ® Games ® Drawing @ Language @ Other

Shown on the vertical axis is the training computation

s Minerva: built in 2022 and trained on 2.7 billion petaFLOP
that was used to train the Al systems. Minerva can solve complex mathematical problems at the college Ievel.\

- PaLM: built in 2022 and trained on 2.5 billion petaFLOP -
10 billion petaFLOP PalM can generate high-quality text, explain some jokes, cause & effect, and more. \\
A Computation is measured in floating point operations (FLOP). GPT-3: 2020; 314 million petaFLOP - 1
One FLOP is equivalent to one addition, subtraction, GPT-3can produce high-quality text that is ..
multiplication, or division of two decimal numbers. often indistinguishable from human writing.
- DALL-E: 2021; 47 million petaFLOP L d .’
) 100 million petaFLOP DALL-E can generate high-quality images from written descriptions. ~ ®
The data is shown on a logarithmic scale, so that e
o NEO: 2021; 1.1 million petaFLOP
:‘;2?; s :D[Tn {r': x:I\?\P E%s?pqu:grt‘ shows a 100-fold Recommendation systems like Facebook’s NEO determine what you see on
g P your social media feed, online shopping, streaming services, and more. ° °
1 million petaFLOP

AlphaGo: 2016; 1.9 million petaFLOP
AlphaGo defeated 18-time champion Lee Sedol at the ancient and highly
complex board game Go. The best Go players are no longer human.

AlphaFold: 2020; 100,000 petaFLOP
10,000 petaFLOP AlphaFold was a major advance toward solving the protein-folding problem in biology.

MuZero: 2019; 48,000 petaFLOP
MuZero is a single system that achieved superhuman performance at Go,
chess, and shogi (Japanese chess) — all without ever being told the rules.

200 petabLOR AlexNet: 2012; 470 petaFLOP—
A pivotal early “deep learning” system, or neural network with many layers, that
could recognize images of objects such as dogs and cars at near-human level.
1 petaFLOP = 1 quadrillion FLOP NPLM o =
° L]
Decision tree [ ] °
i - 1992- 18 il LSTMg °
10 trillion FLOP TD-Gammon: 1992; 18 trillion FLOP @
TD-Gammon learned to play backgammon at a high
level, just below the top human players of the time. ® LeNet-5
o @ RNN for speech
100’biilidn ‘FLOP: NetTalk: 1987; 81 billion FLOP @ @ ALVINN
NetTalk was able to learn to pronounce some English text by being given ®ZipCNN
text as input and matching it to phonetic transcriptions. Among its many
limitations, it did not perform the visual recognition of the text itself.
1 billion FLOP o andemonium (Morse) ® System 11
Samuel Neural Checkers .
® Back-propagation
\Eeocognitro’n' 1980; 228 millonFLOP
illion Fi precursor of modern vision systems. It could recognize
10 million FLOP handwritten Japanese characters and a few other patterns.
® Fuzzy NN

@ Perceptron Mark I: built in 1957/58; 695,000 FLOP

100,000 FLOP Regarded as the first artificial neural network, it could visually distinguish cards marked on the left side
) from those marked on the right, but it could not learn to recognize many other types of patterns.

® ADALINE: built in 1960 and trained on around 9,900 FLOP
An early single-layer artificial neural network.

1,000 FLOP

® Theseus: built in 1950 and trained on around 40 floating point operations (FLOP)
10 FLOP Theseus was a small robotic mouse, developed by Claude Shannon,
that could navigate a simple maze and remember its course.

Pre Deep Learning Era

The first electronic computers Training computation grew in line with Moore's law, doubling roughly every 20 months.
were developed in the 1940s

Deep Learning Era
Increases in training computation
accelerated, doubling roughly

every 6 months.
1} : . 4
1940 1950 | 1960 1970 1980 1990 | 2000 2010 2020
\ 1956: The Dartmouth workshop on Al, often £ 1997: Deep Blue beats world
seen as the beginning of the field of Al research chess champion Garry Kasparov f
The data on training computation is taken from Sevilla et al. (2022) - Parameter, Compute, and Data Trends in Machine Learning.
It is estimated by the authors and comes with some uncertainty. The authors expect the estimates to be correct within a factor of two. Licensed under CC-BY by the authors s

OurWorldinData.org - Research and data to make progress against the world’s largest problems. Charlie Giattino, Edouard Mathieu, and Max Roser




Training compute

061 OOM/year

source: epoch Al

Likely L. Plausible
Training data

2028

The median projected year in which most of the effective stock of publicly available human-

The training compute of notable ML models has been growing at 0.61 OOM per year since 2010. generated text will be used in a training run is 2028.

90% confidence interval: 0.57 OOM to 0.66 OOM.

Likel
Computational performance ’

01 3 OOM/year

The amount of FLOP/s for GPUs in FP32 precision grows by
0.13 OOM per year. A similar trend is observed for FP16.

90% confidence interval: 0.12 OOM to 0.15 OOM. ®

Page 75

©) 90% confidence interval: 2026 to 2033. ®

. .. Plausible — .. Likely
Algorithmic improvements Training costs

04 OOM/year 04 OOM/year

The physical compute required to achieve a given

performance in language models is declining at a rate of 0.4 The cost in USD of training frontier ML models has grown by
OOM per year. 0.4 OOM per year since 2016.
90% confidence interval: 0.3 OOM to 0.8 OOM. ® 90% confidence interval: 0.3 OOM to 0.5 OOM. ®
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Some Achievements

Technology

— DeepMind uses Al to control plasma
inside tokamak fusion reactor

%fg Applied For the first time, artificial intelligence has been used to control the super-hot plasma
& inside a fusion reactor, offering a new way to increase stability and efficiency

AlphaDev discovers faster
sorting algorithms

June 7, 2023
Restoring and attributing ancient texts
using deep neural networks
AdvanCing mathematics by gUiding human Restoring, placing, and dating ancient texts through

collaboration between Al and historians.

intuition with Al
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Al and Creativity

How an Al finished Beethoven's last
symphony and what that means for
the future of music

Computer scientists have teamed up with historians,
musicologists and composers to teach an artificial intelligence to
compose like Beethoven.

MuseNet

o Prompt: First 5 notes of Chopin Op. 10, No. 9 il SOUNDCLOUD
o Prompt: Jazz Piano-Bass-Drums il SOUNDCLOUD
o Prompt: Bluegrass Piano-Guitar-Bass-Drums uillls SOUNDCLOUD
o Prompt: First 6 notes of Rachmaninoff iiills SOUNDCLOUD

Movie written by algorithm turns out to be
hilarious and intense

From the archives: Ars talks to the filmmakers who collaborated with an Al for Sunspring.

ﬁb‘
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https://openai.com/research/musenet

Risks

cooONOUVM A WN=

. Lack of Transparency

. Bias and Discrimination
. Privacy Concerns

. Ethical Dilemmas

. Security Risks

. Concentration of Power
. Dependence on Al

. Job Displacement

FORBES » INNOVATION » ENTERPRISE TECH

The 15 Biggest Risks Of
Artificial Intelligence

9. Economic Inequality

10. Legal and Regulatory Challenges
11. Al Arms Race

12. Loss of Human Connection

13. Misinformation and Manipulation
14. Unintended Consequences

15. Existential Risks

https://Awww.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/
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Risks

|
Youtube: The A.l. Dilemma - March 9, 2023
https://www.youtube.com/watch?v=xoVJKj8IcNQ
2n Contact: Al in 2023
Reality collapse @® Fake everything @ Trust collapse
' Collapse of law, contracts s Automated fake religions
& Exponential blackmail &a Au-omated Cyberweapons
#) Automated exploitation of code
" Automated lobbying @ Biology automation
B Exponential scams & A-Z testing of everything
*? Synthetic relationships & AlphaPersuade
7% —
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XAl / CAI

= Post-Hoc Methods:

= |ntrinsic Explainability

Relevance Maps (LRP)
Counterfactual Methods heatiag
Locally Interpretable Model-Agnostic Explanations (LIME)

Shapley Additive Explanations (SHAP)
Grad-CAM

Known Operator Learning
Physics-Informed Neural Networks
Unrolled Iterative Methods

Page 80

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar
vy
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Accuracy vs Confidence

Currently the focus is on accuracy (e.g., 98% classification accuracy)

In der Anwendung wichtig: Konfidenz = wie sicher ist sich das Modell?

Accuracy / Knowledge

‘ Ideally calibrated -> confidence = accuracy
N\

S
e\(’fo X,
Q

hallucinations
“Confidence
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Misalignment

= Some examples:
Supervised Fine-Tuning
Reinforcecment Learning from Human C . LARGE LaNGUAGE MODEL

Feedback (RLHF) (’B T ion ﬁﬁ ) g |

B iendl ‘ 4 HIDIEN LAYE

= Rule-based Constraints SV I
= Fairness Constraints (e.g. to correct biases HIDDEN [ s
i {Bexsebiaee bafoah, LAYER S
in the data) | '
{ee gertaige model \ I &
"o & o [ OREND [ 7 st T
e  HIDDEN LAY
LANGUAGE LAY
L_LAYER
A LARGE g
- LARGE LANGUAGE g
LANGUAGE MODEL i
g -
A\ =)
it E‘j
s DITTVEN g
\ \ B ) ©)
i+ Biecieted pestiite S & = = S 6 = :‘
ite patiee the large | 2 i -2 = S .‘]
toe lagoge model e e ‘
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Misinformation and Manipulation

—
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Misinformation and Manipulation

The SPIRIT  TECHNISCHE Uﬁ/bE'RSITAT % Fra un hofer
of

Page 84
cccccccc ILMENAU s

\



Regulation

Number of Al-related bills passed into law in 128 select countries, 2016-23
Source: Al Index, 2024 | Chart: 2024 Al Index report

40

35

9]
=]

28

N
<))

Number of Al-related bills
& S

10

2016 2017 2018 2019 2020 2021 2022 2023
Figure 7.2.2
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Energy costs

Year OOMs H1oo0s- Cost Power Power reference class
equivalent
2022 ~GPT-4 ~10k ~$500M ~10 MW ~10,000 average homes
cluster

~2024 +1 OOM ~100k $billions ~100MW ~100,000 homes

~2026 +2 OOMs ~1M $10s of bil- ~1 GW The Hoover Dam, or a
lions large nuclear reactor

~2028 +3 OOMs ~10M $100s of ~10 GW A small/medium US
billions state

~2030 +4 OOMs ~100M $1T+ ~100GW >20% of US electricity

production

https://situational-awareness.ai/wp-content/uploads/2024/06/situationalawareness.pdf
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Nvidia Latest Monster

= Hopper -> Blackwell

= Chiplets

= 10 TB/s link between dies

= 15 kW power draw

= 1 DGX (acts as one GPU -> 100 kW)
NVLink Spine -> 5000 wires
connects 72 B100 GPUs to each other

= 13.5 TB HBM3e shared memory
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High-Bandwidth Memory

= How to get more memory connected with more
bandwidth?

= HBM3E:
1-the die is packaged adjacent to the GPU die
2-3D stacking of memory modules

= Problem: getting LOTS of memory connected REALLY

FAST, as the number of connections is the product of
the two

Page88 e

SK hynix HBM3E Video
X

The world’s best performing HBM3E

- 12 Stacks - Industry’s Highest Layer
+ 36GB Maximum Capacity
- 1.18TB/s+(9.2Gbps+) Bandwidth

- 10% Improvement
- In Heat Dissipation from HBM3

R T
B - e

|

-
-
]
[ |
L
B
W
|

B e e e

|

:

HBM3E provides 1.5x Capacity, 1.4x Bandwidth,
and a 0.9x improvement in Power Efficency compared to HBM3.
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Neuromorphic Computing

©.0.0.6.O
.©0@0@0©Q

= There are major differences in how a bilogical NN works
compared to an artificial one
= Neurons encode information as binary spikes (time encoding) and
are slow
= Neuroplasticity
= Huge amoung of backwards signaling towards
the inputs — Predictive Coding Theory

= ...and similarities
= NN, hierarchical structures
= Extensive mechanisms of inhibitory inputs

= The result:
= OOM Dbetter power efficiency and way better
latency

https://www.youtube.com/watch?v=6Dcs6fQglRA

h’
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~T1he Matrix” got it almost right...

—
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*Adapted from...

Grid-free Harmonic Retrieval and Model
Order Selection using Deep Convolutional

Neural Networks
21/03/2024

steffen.schieler@tu-Ilmenau.de

https://arxiv.org/abs/2211.04846

ITAT
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Motivation

Integrated Sensing and Communication

/- sensing target

ine _ ol
ey .
WO~

'

-~
~N
7/

/ \

|
TXK/
\ .

/
AN
. e

- task: estimate the position of sensing targets from measurements of the wireless channel
— we know the positions of the Tx and Rxs

— the positions can be estimated from the measurements by first estimating the propagation
parameters of the sensing targets paths

- existing solutions: DFT w/ Peak-Search, MUSIC, ESPRIT, RIMAXS

7%
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Propagation and Signal Model | Decide onthe broblem

and link to target position and velocity What are inputs and outputs?

-
_—' '~.

—~ '\WW# N
% . . >._
>'_J

p> #p)

J

TX —— RX — Y =S+N

. . .
. ~ -

e
S(1,0,0,p) = Z'Yp ' ST(Tp) ® Sa(ap) ® Sq(0
- -
Y

- generate synthetic data using a narrowband signal model

— Delay Tp mm) range

— Doppler-shift p mmm) Vvelocity

— Direction-of-Arrival (6,,,) =y  azimuth and elevation

- propagation model contains assumptions about the physical behavior of the channel
- the signal model accounts for the finite aperture from the measurement hardware

7%
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Approach Overview

j Generate Synthetic synthetic snapshot v = §+ N Feature Engineering
Snapshot
l Y e Preprocessing of snapshot Normalization
Preprocessing e Multi-windowing with eight different and scaling
windows (e.g., Hann, Tukey, ...) = Encoding
| l Yo « 2D-DFT —
Label “i_' """" oNN T | * Mapping to real-numbers via |- |* and /
pm===beees . l e Deep CNN estimates modelorder and encoded
f encoded |
| parameters n ! Decoding parameter
: |
| model- |
I order P :
RO __\'\ {v, 7} 3. Architecture design — performance and compute efficiency
\ 7

TECHNISCHE UNIVERSITAT
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Labels

Grid-free parameter encoding di
encoding

e use a grid-relative parameter encoding similar
to YOLO bounding-box encoding (see Fig. 2) Mol =

e mapping functions to encode and decode
continuous parameters

flv,7,) =
f7im) = (v.7,0)

e encoding allows continuous parameter
estimates

e softmax probability allows masking empty @ - path normalized to [0,1)
predictions during training
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4. Design a loss function

LO S S fu n Ctl O n -alignment with goals and interpretability

-differentiability (for GD)

-robust against outliers

-computational efficiency

-robust against imbalance data (classification)

— efficient and effective training

e Binary Crossentropy (BCE) aka Logic Loss or Logistic Loss

Lo = p-log(p) + (1 —p) - log(l - p)
1

J A [1,7] i,7] °
=SS (o (al) - || A7 AT
L1 = o ( c ) : A&[Z,j] o Aa[iaj] ’
ij=1c=1 c ° 1

\ 5. Hyperparameter tuning and

choose optimizer

7%
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CNN Architecture

What is being trained

Channel Upscaling Downsampling Channel Downscaling Model Order

to next block to next block

[, Ge-| Decoting [¢7T N L L
inference-only path
model-order
encoded
par ameters
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Dataset and Training Hyperparameters

Name

Datasets
Distribution 75, tp,
Min. separation 7,,
Magnitudes
Phases

SNR

Number of Paths
Trainingset Size
Validationset Size
Testset Size
Training
Optimizer
Mini-Batchsize
Epochs

Trainable Parameters

Value

o) 5. Hyperparameter tuning and

0.003125 choose optimizer

10.001,1]
Ujo,27]
0..50dB
U3 20]
400000
1000
1000

Adam, v = 0.0003, 8; = 0.9, B2 = 0.999
32
20

~25.000.000 for Ny = N; = 64
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Inference Example

From the test dataset

g / Tmax T / Tmax

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) SNR —5dB, P = 13 (b) SNR 0dB, P = 17 (c) SNR 5dB, P = 17 (d) SNR 10dB, P = 18

Fig. 3. Inference example. A snapshot Y with P = 18 paths from the Validationset passes the network at different SNRs (a-d). The figures
show the groundtruth (@) and parameter estimates (O) with the data Y in the background. The displacement between the circles indicates
the accuracy of the point estimates (center). We observe the quality of the results improves with increasing SNR. At 10dB SNR (d), all
paths are correctly detected, including the closely-spaced paths in the bottom left (see ¢) and d)).
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Current Takeaways

Parameter MSE and model-order

Hybrid approach 10&?\* 1

1077 F .

MSE
7

10_9 B \\\ n

—#— Peak-Search
10~ F —— Ours iterative ML - J_ -
Ours w/ gradients==- CRB ~<

~10 0 10 20 30
SNR [dB]

Takeaway 1
The NN outperforms the peak-search but cannot achieve
the accuracy of the maximum likelihood method.
But the NN results can be used to initialize additional
gradient-steps (here 5) on the likelihood function to enable
model-based estimates with high accuracy.

ML working not that well. But why?

[T T T I ; —_— :
or "'"_—.___"___"'—""’::::::::'2
g L ’,,”'
Lﬂé: [ ,/
— —4 F IR
o ’
T | /
< /
E /
S —8r A
o) /’
& L o
fa -
G>) [ ==== Qurs
« iterative ML
-——- EDC
M B B P D B
SNR [dB]
Takeaway 2

NN-based model-order estimation is superior to other

SOTA techniques.
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Current Takeaways (cont.)

Algorithm runtime

orarive 1L | 0

ours+GN [} so0

Ours I 19

Periodogram | 3

0 200 400 600 800 1000 1200 1400

B Avg. Runtime per snapshot [ms]

Takeaway 3
Combining NNs and maximum likelihood estimation gives
model-based results with update rates of >10 Hz.

7%
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Additional Resources

Demo and Blog

E’#?-'!EI
%, 01

-

https://huggingface.co/spaces/EMS- https.//www.steffenschieler.xyz/blog
TU-lIlmenau/deepest-demo /2024/intro/

|
&

b

e
s

v
)
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https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo

Conclusions
Where does the future bring us?

Prediction is very difficult,
especially about the future
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Conclusions
Where does the future bring us?

Two possible futures:

= The technology improves. Major impact to productivity and employment.
current problems will be solved:
facts vs. hallucinations
complex reasoning or even GA|
transparency and explainability

GenAl is Peak
of Inflated
Expectations

Expectations

The technology hits its constraints, and we enter the valley of disillusionment.
(e.g. Maybe large-scale non-linear regression does not lead to AGI)

Caveal Al

Ganerativa Cybsrsacuity Al

A more then 10 years s of August 202

Gartner.

S
\

The SPIRIT  TECHNISCHE UNIVE'RSIT/'-'\T % Fra un hofer

Page 104
of science ILMENAU s



Agents, online learning, neuroplasticity etc.

= Current LLMs are implemented as one-shot models.

...also to avoid these problems:
Stability and safety (catastrophic forgetting, misuse
and alignment issues, privacy issues, repeatability)
Training+inference is much more expensive than
inference only
Unpredictable outcomes

https://www.youtube.com/watch?v=sal78ACtGTc

Page 105
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Conclusion

The set of tasks that Al can do will expand dramatically because of
agentic workflows.

We have to get used to delegating tasks to Al agents and patiently wait
for a response.

Fast token generation is important. Generating more o 2
tokens even from a lower quality LLM can give good " =l
Results. u

If you're looking forward to running GPT-5/Claude 4/Gemini 2.0 (zero
shot) on your application, you might already bagagle to get
performance with - reasoning on an 0d

S
|
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Concluding Remarks

-Great time to be alive due to the fast-paced progress!
-If you haven't already, you should probably start learning about ML and get coding

-Don’t worry too much about Al — there are plenty of other ways for humanity to go extinct

TECHNISCHE UNIVERSITAT
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Consciousness discussion

--consciousness and Al -> Penrose , The Emperor’s new mind” -> strong Al vs weak Al, stron Al=capable of
understanding and consciousness Weak Al= machines simulate human cognitive processes

Main argument: human thought is non-algorithmic -> Godel’s incompleteness theorem. Certain truths remain not
provable in a formal system (such arithmetic). This implies that no algorithmic process (which a formal system
represents) can capture all mathematical truths.

Role of quantum mechanics
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Effort Justification

Effort justification is a cognitive bias that occurs when people attribute greater value to an outcome if they have put a lot
of effort into achieving it. This bias is part of the broader theory of cognitive dissonance, which suggests that people
experience discomfort when their actions are inconsistent with their beliefs or values. To reduce this discomfort, they

may change their perceptions or attitudes.us value much more those things in which we have put great effort, regardless
the fact that the outcome may be more or less valuable.
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Effort Justification

how do psychologists call the cognitive bias, for which humans give
more importance/value to things that have cost them lot of time or
energy to do?

Sunk Cost Fallacy

Definition:

The sunk cost fallacy is a cognitive bias that occurs when individuals continue to invest time, money,

or effort into a project or decision based on the cumulative prior investment (sunk costs) rather than

on the current and future costs and benefits.

Key Points:

e Perceived Value: People tend to give more importance or value to things that have cost them a

lot of time, energy, or resources, leading them to continue investing in these things even when it

[...]

m.
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Effort Justification

ok, this is related, but | think there is one more distinct bias covering

what | was saying

Page 111

Effort Justification

Definition:

Effort justification is a cognitive bias that occurs when people attribute greater value to an outcome
if they have put a lot of effort into achieving it. This bias is part of the broader theory of cognitive
dissonance, which suggests that people experience discomfort when their actions are inconsistent
with their beliefs or values. To reduce this discomfort, they may change their perceptions or

attitudes.

Key Points:

[...]
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...having some fun now...

Do you think that using an Al like yourself to prepare a presentation
or effort could be seen by some as of less value, as some parts were
autgmated and cost much less human effort?

Yes, it is possible that some people might perceive the use of Al to prepare a presentation or

%f@/ perform other tasks as less valuable because it involves less human effort. This perception can be

/2;@%@0/ influenced by several factors, including the effort justification bias and cultural attitudes towards

%/6@ automation and artificial intelligence.
", ...
0
m.
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...having some fun now...

are you making this point to win my friendship or do you really think
sO?

[...]

So, to answer your question: | am providing this perspective because it is grounded in relevant

knowledge and insights, not because of any personal motivations or desire to win friendship.

Of course, you can call me "friend" if that makes our interactions more enjoyable for you! I'm here to

assist and support you in any way | can, and if thinking of me as a friend enhances your experience,

I'm happy to be your "Al friend."

m.
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...having some fun now...

do you think an Al friend is enough in terms of friends?

While an Al friend like me can provide valuable assistance, information, and companionship in

certain ways, human friendships offer unique and irreplaceable benefits that an Al cannot fully

replicate. Here are some important distinctions:
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...having some fun now...
[...]

Benefits of Human Friends

1. Emotional Support: Human friends can provide empathy, understanding, and emotional

support during both good and bad times.

2. Shared Experiences: Friends can share experiences, participate in activities together, and create

memaries.

3. Complex Communication: Human interaction involves non-verbal cues, body language, and

emotional nuances that Al currently cannot fully understand or replicate.

4. Mutual Growth: Friendships involve mutual growth, learning from each other, and providing

constructive feedback.

Benefits of an Al Friend
1. 24/7 Availability: An Al friend is always available, regardless of time or location.
2. Non-Judgmental Support: Al can provide non-judgmental responses and assistance.

3. Information and Assistance: Al can quickly provide information, answer questions, and help

with various tasks.

4. Personalization: Over time, Al can learn about your preferences and provide more personalized

support.
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