
Machine Learning
—
June 24th, 2024

Prof. Giovanni Del Galdo
with contributions by Florian Römer, Steffen Schieler, 

Sebastian Semper, Christopher Sobel, Nicolas Witt, Jonas Gedschold

https://de.depositphotos.com/90806746/stock-photo-robot-sitting-on-a-bunch.html



Page 2

Machine Learning
General Information

Presenter: Prof. Giovanni Del Galdo

Electronic Measurements and Signal Processing (TU Ilmenau)

Electronic Measurements and Signal Processing Department  (Fraunhofer IIS)

Inputs and Sources

• Presentations and webinars from my co-authors: 
Florian Römer, Steffen Schieler, Sebastian Semper, Christopher Sobel, Nicolas Witt

• [MIT] Introduction to Deep Learning | 6.S19 @MIT
http://introtodeeplearning.com

• [HAI] https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-
2024.pdf

• https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-performance

• https://epochai.org/trends#investment-trends-section

• chatGPT4o, DALL-E

• Youtube: 3Blue1Brown, Steve Brunton, Sabine Hossenfelder

http://introtodeeplearning.com/
https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/05/HAI_AI-Index-Report-2024.pdf
https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-performance
https://epochai.org/trends#investment-trends-section
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Machine Learning
General Information and scope

If you have a question, feel free to interrupt!

What to expect?

• Get a rough idea about how DL works, and how we got to LLM

• Get an overview on selected trends in research and industry

• Understand the main problems we need to solve in ML, and which risks to mitigate

• Speculate with me in which direction the future will bring us
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Terminology

Artificial Intelligence

Machine Learning

Deep Learning
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Intelligence

▪ What is intelligence?

Intelligence: the ability to process information which will 
inform future decision-making abilities

In the context of AI: The capability of a machine to 
perform tasks that would require intelligence if done by 
humans. These tasks include learning, reasoning, problem-
solving, perception, and language understanding.



AI, ML and DL

Page 6

Machine Learning

▪ What is intelligence?

▪ What is machine learning?

The science which studies how to make machines make 
predictions or take decisions based on data without being 
explicitly programmed to perform specific tasks  



Features /

Model

Features / 

Model

AI, ML and DL

Page 7

Machine Learning

Data

Traditional Programming

Answers

Features & Rules (color)

Orange

Cherry

Orange

Cherry

Data

Machine Learning

Answers

Orange

Cherry

Orange
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Machine Learning

Source [MIT]

▪ What is the advantage of learning features instead of programming them explicitly?
▪ Less human effort
▪ Scaling
▪ High dimensional data becomes treatable 
▪ Robustness
▪ Works better
▪ Generalizable
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Deep Learning

▪ What is intelligence?

▪ What is machine learning?

▪ What is deep learning?
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Classical taxonomy, not so useful anymore

Machine Learning

Supervised
Learning

Unsupervised 
Learning

Reinforcement 
Learning

• Classification
• Regression
• Support Vector 

Machines
• Decision Trees
• CNN (typically)

• Clustering (K-Means) 
• Principal Component 

Analysis (PCA)
• Autoencorders
• Self-supervised learning

• Reaction to environment
• Sequential Decision Making
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Reinforcement Learning

Learning through interaction

Agent Environment

Action 𝑎 ∈ 𝐴

State 𝑠 ∈ 𝑆
Reward 𝑟
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Unsupervised Learning
Mainly Clustering

Goal: Find patterns in data

▪ Simplify data

▪ Segmentation, compression

Example Segmentation:

▪ Customer Data

Which 3 main types of customers do we have?

What else buy customers typically?






 






 















































 



















 


















 
























 






 















































 



















 


















 



















https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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Supervised Learning
Function Estimation/Approximation

Given:

▪ Data: Many examples of input 𝑥 and output 𝑦

Unknown:

▪ Function 𝑥 → 𝑦

▪ Output 𝑦 for new input 𝑥

𝒇 𝒙𝑥 𝑦
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Supervised Learning
Classification & Regression

Classification

Output: Discrete Class / Category / Discrete State

Regression

Output: Continuous Value

𝒇(𝒙)𝑥 𝒚

𝒇(𝒙)𝒙 𝒚
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Some History
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 

▪ Big data availability and trends in open science

▪ Hardware

▪ Algorithms and Software

▪ Commercial interest (covers HW, training and inference costs)

▪ Funding

▪ Availability of compute
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 

▪ Big data availability and trends in open science
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▪ Algorithms and Software

▪ Commercial interest (covers HW, training and inference costs)
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▪ Availability of compute



Datasets
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ImageNet

BLASTNet

▪ Why make a dataset publicly available? 

▪ Recognition and impact

▪ Grant requirements

▪ Incentivize R&D for one specific problem

▪ Citations!

MNIST



Challenges and Benchmarks
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[HAI]: Harder benchmarks emerge. AI models have reached performance saturation on established benchmarks such as ImageNet, SQuAD, and 

SuperGLUE, prompting researchers to develop more challenging ones. In 2023, several challenging new benchmarks emerged, including SWE-bench 

for coding, HEIM for image generation, MMMU for general reasoning, MoCa for moral reasoning, AgentBench for agent-based behavior, and 

HaluEval for hallucinations. 

https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
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https://epochai.org/data/notable-ai-models
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 

▪ Big data availability and trends in open science

▪ Hardware

▪ Algorithms and Software

▪ Awe-inspiring results

▪ Commercial interest (covers HW, training and inference costs)

▪ Funding

▪ Availability of compute
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▪ Why do large companies like open science?

▪ Faster innovation

▪ Safety and trust

▪ Establish de facto standards

▪ Establish large communities

▪ Talent recruitment and acquisition

▪ MONEY!

▪ Why open science?

▪ Faster innovation

▪ Safety and trust

▪ Maximizing the use of research data

▪ Democratizing access to knowledge
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Acronym … as a Service

SaaS Software… Companies offer ML-powered 
applications as subscription-based 
services over the internet.
(also API-based services)

ChatGPT, Microsoft365

PaaS Platform… Providing a cloud-based platform that 
allows customers to build, deploy, and 
manage ML applications.

Google Cloud AI, 
Microsoft Azure ML

IaaS Infrastructure… Offering raw computational 
infrastructure that can be used to run 
ML workloads.

Amazon AWS, 
Microsoft Azure 

DaaS Data… Selling access to curated datasets or 
data streams that can be used for ML 
model training and analytics.

Nielsen for consumer 
behavior data
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 

▪ Big data availability and trends in open science

▪ Hardware

▪ Algorithms and Software

▪ Commercial interest (covers HW, training and inference costs)

▪ Funding

▪ Availability of compute
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The problem of scaling

▪ Scaling UP ▪ Scaling OUT
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https://epochai.org/data/notable-ai-models
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 

▪ Big data availability and trends in open science
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▪ Algorithms and Software

▪ Commercial interest (covers HW, training and inference costs)

▪ Funding

▪ Availability of compute
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▪ Software Frameworks:

▪ TensorFlow: Developed by Google, now including the Keras API

▪ PyTorch: Developed by Meta

▪ Apache MXNet: Supported by Amazon

▪ …

▪ Sharing / Compute / Discussion Platforms:

▪ Kaggle: Owned by Google

▪ Hugging Face: Includes Model Hub and Dataset Hub.

▪ GitHub: Owned by Microsoft.

▪ Google Colab: Cloud-based Jupyter notebooks with free GPU/TPU access

▪ …

▪ Breakthrough algorithms developments: 

▪ Transformers, BERT, GAN, Self-supervised learning, etc. -> ~3x training efficiency gain / year
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Why now?

▪ The Fundamentals of ML are old. For example: Algorithms to automatically find features have existed for decades

So… why now? 
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▪ Commercial interest (covers HW, training and inference costs)

▪ Funding

▪ Availability of compute
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AI Economy

[HAI]
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Training Cost

https://epochai.org/data/notable-ai-models
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▪ “The total that the DoD might spend on AI-related contracts if each contract were extended to its fullest terms grew even faster, from $269 million in the 

period leading up to August 2022 to $4.3 billion in the period leading up to August 2023. ”, The U.S. Military’s Investments Into Artificial Intelligence Are 

Skyrocketing”, Time Magazine, March 2024

▪ Strategic relevance of AI?

▪ Situational awareness and intelligence

▪ Autonomous systems 

▪ Cybersecurity 

▪ Logistics
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Private Investment

[HAI]
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Industry dominates AI research
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The main ideas of DL
The perceptron

▪ To discuss: dimensionality reduction – latent space – modeling and understanding; non-linearity 

source: adapted from MIT
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Why non-linearity?
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Why non-linearity?

Network of any complexity
with linear components

= Simplest linear circuit
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Why non-linearity?

Network with non-linear 
components

=

Complex behavior
(i.e., non-linear)

!expressiveness
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feature space
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The main ideas of DL
The perceptron
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Neural Networks

hidden layersinputs outputs

Single Layer Multiple Layers

fully connected layers
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Importance of the Architecture: Emergence

▪ The architecture at large scales might play a much bigger role to determine behavior compared to the individual components

Example 1: op-amp with feeback loop
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Importance of the Architecture: Emergence

▪ The architecture at large scales might play a much bigger role to determine behavior compared to the individual components

Example 1: sum of random variables



Page 47

Emergence of complexity

▪ A system composed of simple components exhibits behaviors and 
properties that are not apparent from the individual components 
alone. 

▪ The idea is closely related to the separation of scales in physics

▪ Example: School of fish / flock of birds
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Universal Approximation Theorem (UAT)
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Training
Source: adapted from [MIT]
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Training
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Training

update step:

learning rate

gradient

Problem: what if we get stuck in a local minimum? -> SGD, MBGD
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Training

▪ Learning rate too small ▪ Learning rate too large ▪ Optimally adaptive
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Momentum and adaptive learning rates
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Training
Source: 3Blue1Brown: https://www.youtube.com/watch?v=Ilg3gGewQ5U
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Training

!AutoDiff keeps a computational 

graph
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Fitting
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Bias-Variance Tradeoff

▪ Bias: here it is intended as the error from model mismatch introduced by approximating a 

real-world problem, which may be extremely complex, by a much simpler model.

▪ Variance: here refers to the error introduced by the model's sensitivity to the specific training data. 

A model with high variance pays too much attention to the training data, including the noise, and performs well on training data
but poorly on unseen data (overfitting).

▪ Irreducible error: Noise inherent in the problem itself.

source: Wikipedia

Total Error = Bias2 + Variance + Irreducible Error



Page 58

Regularization
source: adapted from [MIT]
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Regularization

Bias-variance tradeoff

source: adapted from [MIT]

Training

Validation

Test
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Sequential Data

▪ Very often data is sequential 

in nature, e.g., text, audio, 
ECG, etc. 
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Recurrent Neural Networks (RNN)

source: adapted from [MIT]
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Recurrent Neural Networks (RNN)
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Recurrent Neural Networks (RNN)

▪ Problems with backprop:

▪ gradients exploding
▪ gradients vanishing
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Problems with RNN

▪ It is difficult for RNNs to learn from long sequences because the necessary information cannot be effectively propagated 

through many time steps.
(exploding and vanishing gradients)

▪ Difficult to parallelize given the step-by-step nature of the inference

▪ Relatively small size hidden layers limit the amount of information (features of the data) which can be stored

Solutions:

▪ Gated Recurring Units (GRU)

▪ Long Short-Term Memory 

▪ Transformers
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Long Short-Term Memory

▪ One solution:
▪ Introduce gated cells:

▪ Input gate
▪ Forget gate
▪ Output gate
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Attention is all you need – Self-attention Head

Alice noticed the beautiful painting.
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Attention is all you need – Self-attention Head
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Key Advantages of Self-attention

▪ For each input (e.g. word) we have a context (e.g., which other word are relevant) -> reveals the relationships 
between inputs

▪ Allows for parallelization (also in the training)

▪ Long dependencies / input sequences
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Large Language Models – Status Quo 

Self-attention -> transformers -> LLMs 
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https://epochai.org/data/notable-ai-models



AI vs Homo Sapiens
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Training Compute
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source: epoch AI
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Some Achievements
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AI and Creativity

https://openai.com/research/musenet
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Risks

1. Lack of Transparency
2. Bias and Discrimination
3. Privacy Concerns
4. Ethical Dilemmas
5. Security Risks
6. Concentration of Power
7. Dependence on AI
8. Job Displacement

9. Economic Inequality
10. Legal and Regulatory Challenges
11. AI Arms Race
12. Loss of Human Connection
13. Misinformation and Manipulation
14. Unintended Consequences
15. Existential Risks

https://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/
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Risks

https://www.youtube.com/watch?v=xoVJKj8lcNQ

Youtube: The A.I. Dilemma - March 9, 2023



XAI / CAI
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▪ Post-Hoc Methods:
▪ Relevance Maps (LRP)
▪ Counterfactual Methods
▪ Locally Interpretable Model-Agnostic Explanations (LIME)
▪ Shapley Additive Explanations (SHAP)
▪ Grad-CAM
▪ …

▪ Intrinsic Explainability
▪ Known Operator Learning
▪ Physics-Informed Neural Networks
▪ Unrolled Iterative Methods
▪ …
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Currently the focus is on accuracy (e.g., 98% classification accuracy)

In der Anwendung wichtig: Konfidenz → wie sicher ist sich das Modell?

Confidence

Accuracy / Knowledge
Ideally calibrated -> confidence = accuracy

hallucinations
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Misalignment

▪ Some examples: 
▪ Supervised Fine-Tuning
▪ Reinforcecment Learning from Human 

Feedback (RLHF)
▪ Rule-based Constraints
▪ Fairness Constraints (e.g. to correct biases 

in the data)
▪ …
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Misinformation and Manipulation
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Misinformation and Manipulation
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Regulation
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Energy costs

https://situational-awareness.ai/wp-content/uploads/2024/06/situationalawareness.pdf
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Nvidia Latest Monster

▪ Hopper -> Blackwell

▪ Chiplets

▪ 10 TB/s link between dies

▪ 15 kW power draw

▪ 1 DGX (acts as one GPU -> 100 kW)
NVLink Spine -> 5000 wires 
connects 72 B100 GPUs to each other

▪ 13.5 TB HBM3e shared memory
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High-Bandwidth Memory

▪ How to get more memory connected with more 
bandwidth? 

▪ HBM3E:
1-the die is packaged adjacent to the GPU die
2-3D stacking of memory modules

▪ Problem: getting LOTS of memory connected REALLY 
FAST, as the number of connections is the product of 
the two 
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Neuromorphic Computing

▪ There are major differences in how a bilogical NN works 
compared to an artificial one
▪ Neurons encode information as binary spikes (time encoding) and 

are slow
▪ Neuroplasticity
▪ Huge amoung of backwards signaling towards 

the inputs – Predictive Coding Theory

▪ …and similarities
▪ NN, hierarchical structures 
▪ Extensive mechanisms of inhibitory inputs
▪ …

▪ The result: 
▪ OOM better power efficiency and way better

latency
https://www.youtube.com/watch?v=6Dcs6fQglRA
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„The Matrix“ got it almost right…



Grid-free Harmonic Retrieval and Model 
Order Selection using Deep Convolutional 

Neural Networks
21/03/2024

steffen.schieler@tu-Ilmenau.de

EUCAP 202491

*Adapted from…

https://arxiv.org/abs/2211.04846



Motivation
Integrated Sensing and Communication

- task: estimate the position of sensing targets from measurements of the wireless channel
– we know the positions of the Tx and Rxs
– the positions can be estimated from the measurements by first estimating the propagation 

parameters of the sensing targets paths
- existing solutions: DFT w/ Peak-Search, MUSIC, ESPRIT, RIMAXS

sensing target

92 EUCAP 2024



Propagation and Signal Model
and link to target position and velocity

- generate synthetic data using a narrowband signal model 
– Delay range
– Doppler-shift  velocity
– Direction-of-Arrival azimuth and elevation

- propagation model contains assumptions about the physical behavior of the channel
- the signal model accounts for the finite aperture from the measurement hardware

RxTx

propagation model

93 EUCAP 2024

1. Decide on the problem
What are inputs and outputs?



Approach Overview

• Draw random parameters and generate a 
synthetic snapshot

• Preprocessing of snapshot
• Multi-windowing with eight different 

windows (e.g., Hann,  Tukey, …)
• 2D-DFT 
• Mapping to real-numbers via

• Deep CNN estimates modelorder and encoded 
parameters

Generate Synthetic 
Snapshot

Preprocessing

CNN

Decoding

Label

model-
order

encoded 
parameters

94 EUCAP 2024

Normalization 
and scaling
= Encoding

2. Generating data (for SL: train, validate, test)

Feature Engineering

Number of parameters not kwown a priori

3. Architecture design – performance and compute efficiency 



Labels
Grid-free parameter encoding

• use a grid-relative parameter encoding similar 
to YOLO bounding-box encoding (see Fig. 2)

• mapping functions to encode and decode 
continuous parameters

• encoding allows continuous parameter 
estimates

• softmax probability allows masking empty 
predictions during training

95 EUCAP 2024

- path normalized to [0,1)

encoding



Loss function
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• Binary Crossentropy (BCE) aka Logic Loss or Logistic Loss

4. Design a loss function
-alignment with goals and interpretability
-differentiability (for GD)
-robust against outliers
-computational efficiency
-robust against imbalance data (classification)

→ efficient and effective training

5. Hyperparameter tuning and 
choose optimizer 



CNN Architecture
What is being trained

encoded 
parameters

model-order

97 EUCAP 2024
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5. Hyperparameter tuning and 
choose optimizer 



Inference Example
From the test dataset

99 EUCAP 2024



Takeaway 1
The NN outperforms the peak-search but cannot achieve 

the accuracy of the maximum likelihood method.
But the NN results can be used to initialize additional 

gradient-steps (here 5) on the likelihood function to enable 
model-based estimates with high accuracy.

Current Takeaways
Parameter MSE and model-order

Takeaway 2
NN-based model-order estimation is superior to other 

SOTA techniques.

100 EUCAP 2024

ML working not that well. But why?

Hybrid approach



Current Takeaways (cont.)
Algorithm runtime

3

19

60

1190

0 200 400 600 800 1000 1200 1400

Periodogram

Ours

Ours + GN

iterative ML

Avg. Runtime per snapshot [ms]

Takeaway 3
Combining NNs and maximum likelihood estimation gives 

model-based results with update rates of >10 Hz. 

101 EUCAP 2024



Additional Resources
Demo and Blog

https://huggingface.co/spaces/EMS-
TU-Ilmenau/deepest-demo

102 EUCAP 2024

https://www.steffenschieler.xyz/blog
/2024/intro/

https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
https://huggingface.co/spaces/EMS-TU-Ilmenau/deepest-demo
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Where does the future bring us?

Prediction is very difficult, 

especially about the future



Conclusions

Page 104

Where does the future bring us?

Two possible futures:

▪ The technology improves. Major impact to productivity and employment. 

▪ current problems will be solved:

▪ facts vs. hallucinations

▪ complex reasoning or even GAI

▪ transparency and explainability

▪ …

▪ The technology hits its constraints, and we enter the valley of disillusionment. 

▪ (e.g. Maybe large-scale non-linear regression does not lead to AGI)
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Agents, online learning, neuroplasticity etc.

▪ Current LLMs are implemented as one-shot models. 

…also to avoid these problems:

▪ Stability and safety (catastrophic forgetting, misuse 

and alignment issues, privacy issues, repeatability)

▪ Training+inference is much more expensive than 

inference only

▪ Unpredictable outcomes

https://www.youtube.com/watch?v=sal78ACtGTc



Concluding Remarks
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-Great time to be alive due to the fast-paced progress!

-If you haven’t already, you should probably start learning about ML and get coding

-Don’t  worry too much about AI – there are plenty of other ways for humanity to go extinct
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Consciousness discussion
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--consciousness and AI -> Penrose „The Emperor‘s new mind“ -> strong AI vs weak AI, stron AI=capable of 

understanding and consciousness  Weak AI= machines simulate human cognitive processes

Main argument: human thought is non-algorithmic -> Gödel’s incompleteness theorem. Certain truths remain not 

provable in a formal system (such arithmetic). This implies that no algorithmic process (which a formal system 

represents) can capture all mathematical truths.

Role of quantum mechanics



Effort Justification

Page 109

Effort justification is a cognitive bias that occurs when people attribute greater value to an outcome if they have put a lot

of effort into achieving it. This bias is part of the broader theory of cognitive dissonance, which suggests that people 

experience discomfort when their actions are inconsistent with their beliefs or values. To reduce this discomfort, they 

may change their perceptions or attitudes.us value much more those things in which we have put great effort, regardless 

the fact that the outcome may be more or less valuable.
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[…]



Effort Justification
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[…]



…having some fun now…
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[…]
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