I M M S INSTITUT FUR MIKROELEKTRONIK- UND
MECHATRONIK-SYSTEME GEMEINNUTZIGE GMBH

FPGA-based Sensor Signal Processing

Georg Glaser

georg.glaeser@imms.de

We connect the digital to the analog world

=
2 Company presentation 24-Jun-24 ©) IMMS

We transfer results from basic research into applications

We ..

are a land-owned research institute of the German
land of Thiiringen and an affiliated institute and

transfer partner of Ilmenau TU,

strengthen SMEs in particular,

have been offering application-oriented R&D in
microelectronics, systems engineering and

mechatronics since 1995,

support companies in launching internationally
successful innovations for health, the environment
and industry and provide solutions from the

feasibility study to series production.

= IMMS

Sites in Thiringen, Germany

ILMENAU

Germany
Institute headquarters Lr Branch office in Erfurt
next to Technische Universitat Thiiringen in the centre of Thiringen’s microelectronics
Ilmenau industry

= IMMS

We connect the digital to the analog world

N =l IMMs

Digital world

IT systems
Internet of Things
virtual processes

Analog world
physical,

biological and
chemical processes

5 Company presentation 24-Jun-24 © ﬁ |MMS

We bring research results into application: IMMS as R&D and transfer partner

Basic research
technology development
demonstrators

= IMMS

Applied research
miniaturisation
system integration
transfer to production

Customers, industry

6 Company presentation

24-jun-24 ©

i

IMMS

We bring research results into application: IMMS as R&D and transfer partner

RESEARCH FIELDS

LEAD APPLICATIONS

o

TARGET MARKETS

- Integrated sensor systems

- Smart distributed
measurement and test
systems

- Magnetic 6D direct drives
with nm precision

Sensor systems for in-vitro
diagnostics

RFID sensor technology
Adaptive edge Al systems for
industrial application

loT systems for cooperative
environmental monitoring
nm measurement and
structuring of objects

- Life sciences

- Automation technology and
Industry 4.0

- Environmental monitoring and
smart city applications

- Research institutions and
ultra-precision mechanical
engineering

= IMMS

IMMS in figures (*31/12/2022)

Employees*
(especially engineers)

20

Patents*
(conferring priority
of which 12 granted)

8 Company presentation

() (226

(5)

PhD candidates* Students p.a. Nations™*

3.6 80

Million € third-party funding* Research projects*
for application-oriented research (of which 57 industry projects)
24-Jun-24 © % |MMS

Microelectronics department

services / specialists for:

— analogue IC design, digital IC design
— mixed-signal verification

— IC layout

— design methodology, EDA support
degrees in:

— electrical engineering, IT,
— microelectronics, engineering informatics,

— biomedical engineering, solid-state physics
approx. 10 ASICs per year for R&D

approx. 15 students

= IMMS

I M M S INSTITUT FUR MIKROELEKTRONIK- UND
MECHATRONIK-SYSTEME GEMEINNUTZIGE GMBH

FPGA-based Sensor Signal Processing

Georg Glaser

I M M S INSTITUT FUR MIKROELEKTRONIK- UND
MECHATRONIK-SYSTEME GEMEINNUTZIGE GMBH

Part 1: Introduction & Basics

Georg Glaser

What this lecture is (not) about

We will have a look at

— What is an FPGA?

— Structures for implementation
— Verification

— Best practice for Verilog Design

— Common Pitfalls

The following items are excluded

— How to write basic verilog?

— HLS (High-Level Synthesis)

— Synthesis for FPGA or ASIC

= IMMS

Short overview...

Who played with Arduinos?

Computer scientists?

?ﬁ— Electronic engineers?

— Who has experience with VHDL / Verilog?

= IMMS

What is an FPGA?

FPGA = Field Programmable Gate Array

A large set of logic structures that can be programmed to

— Realize an arbitrary logic function
— Realize control algorithms

— Model a processor

How is it programmed?

— Hardware description languages (Verilog / VHDL)

— Development with vendor softare (Xilinx/AMD Vivado, Altera/Intel Quartus)

Combination with On-Chip CPU cores possible

FPGA-based Sensor Signal Processing

Logic Cluster 2 Tracks
——

Ol@ 80 10} (C]0)}

0 (@]

o @]

@ (@)
O I

8 Track:
@]
I|@]
witch Box
0 (@)
o @]

@0 80 ©0 ©0

[l Configurable Logic Tile [170 Tile

‘\/ UV-LED —— u#

ngi ”J!

Why and when is it useful?

Cost Performance

— Pros ASIC

— Inherently parallel processing

— Very fast calculations without van-Neumann Bottleneck

— Real-Time / Constant time processing i

— Fine-Grained control of micro architecture FPGA
— Cons

— Less available memory

— Large design effort

— TAT may be an issue L

CPU

Flexibility Ease of Debug

HW-Accelerators (GPU, etc)
1

15 FPGA-based Sensor Signal Processing 24-Jun-24 © % IMMS

Should I go for an FPGA?

16 FPGA-based Sensor Signal Processing

Do | know Verilog/VHDL?

Do | have time to learn? Yes
\)ks)

l Can my algorithm be used on a data stream?

l

| Can | formulate my algorithm by means of FSMs, Elements, etc.?J
\Y‘es

No Is there an FPGA with sufficient memory? |

Yes

R

Mo [Install design environment ‘

[Are you able to run examples and simulatiuns?}

"\
No Yes

0 &

24-Jun-24 ©

i

IMMS

Where to learn good Verilog/VHDL?

— Just some links (I am not affiliated with any of them, so this represents just my personal collection)

— https://www.fpgaafun.com/

— “Advanced Chip Design, Practical Examples in Verilog” by Kishore Mishra (just read the first half)

— http://www.asic-world.com/verilog/veritut.html

— https://www.sutherland-hdl.com/papers.html

— About Architecture, Design, etc

,ISA System Architecture” by Tom Shanley (old fashioned but really good, also the follow-ups are worth a read)

,Clean Code“ and ,Clean Architecture“ by Robert Martin (not focused on hardware, but very instructive)

— And of cause... the documentation of your FPGA design tool

= IMMS

https://www.fpga4fun.com/
http://www.asic-world.com/verilog/veritut.html
https://www.sutherland-hdl.com/papers.html

Interesting Literature

If you have trouble with timing constraints
https://cdrdv2-public.intel.com/653688/an433.pdf

Verification with Python?

https://www.cocotb.org/

OpenSource Verilog Simulators

https://github.com/steveicarus/iverilog

https://www.veripool.org/verilator/

A very clean MPS430 implementation (with good test environment)
https://github.com/olgirard/openmsp430

= IMMS

https://cdrdv2-public.intel.com/653688/an433.pdf
https://www.cocotb.org/
https://github.com/steveicarus/iverilog
https://www.veripool.org/verilator/
https://github.com/olgirard/openmsp430

Some terminology

— Module:

An entity in Hardware

— DUT:

Device Under Test

— Testbench:
A module that exercises a DUT in simulation

with a stimulus and checking it‘s results

— Clock:

(Globally) available reference signal

19 FPGA-based Sensor Signal Processing

Testbench

DUT

24-Jun-24 ©

i

IMMS

FPGA Work Flow

Specification

eWhat the FPGA should do

eHow the interfaces look like
eWhich internal parts are needed
eTarget FPGA chip

HDL coding

e(Create you hardware components
eintegrate your components to a (working) system
eDefine constraints

Verification

eProve that your code actualy solves your problem
eValidate your asumptions
eSimulate your system!

Physical implementation (automated)

eSynthesis
ePlace@Route
eBitstream generation

Programming & Test in real world environment

IMMS

An example algorithm

— A python class that just averages measurements

import numpy as np

— Each measurement comprises N samples

init_ (self, Nsamples):
self.mem = np.zeros(Nsamples)
self.meas_counter = @
_ HOW dO we get th|$ th|ng into an FPGA7 add measurement(self, measure):

self.meas_counter = self.meas_counter + 1
self.mem = self.mem + measure

get result(self):

return (self.mem / self.meas_counter)

= IMMS

An example algorithm

— How do we get this thing into an FPGA? import numpy as np

Averager():
__init_ (self, Nsamples):
self.mem = np.zeros(Nsamples)
self.meas_counter = @

— What we need:

Interfaces add measurement(self, measure):
self.meas_counter = self.meas_counter + 1
self.mem = self.mem + measure

Memory

. get result(self):
PI'OCGSSlng elements return (self.mem / self.meas_counter)

— Since we are creating hardware:
We cannot have infinite memory
We cannot dynamically increase memory size

Nsamples must be fixed (or at least limited to some maximum)

= IMMS

An example algorithm

— How do we get this thing into an FPGA? import numpy as np

Averager():
__init_ (self, Nsamples):
self.mem = np.zeros(Nsamples)
self.meas_counter = @

— What we need:

Interfaces add measurement(self, measure):
self.meas_counter = self.meas_counter + 1
self.mem = self.mem + measure

Memory

. get result(self):
PI'OCGSSlng elements return (self.mem / self.meas_counter)

— Since we are creating hardware:
We cannot have infinite memory
We cannot dynamically increase memory size

Nsamples must be fixed (or at least limited to some maximum)

= IMMS

An example algorithm

— Since we are creating hardware:
We cannot have infinite memory
We cannot dynamically increase memory size

Nsamples must be fixed (or at least limited to some maximum)

import numpy as np

ger():

max_samples =

add measurement(self, measure):
elf.meas_counter elf.me

esult(self):
n (self.mem[@:self.Nsamples-1] / self.meas_counter)

= IMMS

A system level perspective

— How could a system look like that works like this?

"

25 FPGA-based Sensor Signal Processing 24-Jun-24 © ﬁ IMMS

A system level perspective

— Memory-Estimation:

— We need to aggregate N samples and pass them to the Averager

— The Averager holds N samples for storing the data.

"

26 FPGA-based Sensor Signal Processing

24-Jun-24 © ﬁ |MMS

A system level perspective

— Memory-Estimation:

— We need to aggregate N samples and pass them to the Averager

— The Averager holds N samples for storing the data.

— We can also work directly on the data stream

— Reduce memory demand by approx. factor 2

E—)

27 FPGA-based Sensor Signal Processing 24-Jun-24 © ﬁ IMMS

A system level perspective

— Memory-Estimation:

— We need to aggregate N samples and pass them to the Averager

— The Averager holds N samples for storing the data.

— We can also work directly on the data stream

— Reduce memory demand by approx. factor 2

ax_samples)

d_sample(s sample)

F.sample_counter = self.sample_counter + 1

mples:
counter + 1
self.mem[self.sample_counter] = self.mem[self.sample_counter] + sample

get_result(self):
~eturn (self.mem[©:self.Nsamples-1] / self.meas_counter)

= IMMS

Interfacing

— We assume here a very simple data interface based on a handshake

Data —< >
Valid [

— The readout is assumed to happen only when the measurement is done

Use a fully parallel Interface (like SRAM)

— Setting configuration registers is not shown here

= IMMS

Implementation idea 1 (FSM based)

— FSM = Finite State Machine

— Describe your algorithm by means of

state transitions

Control Block
FSM RAM
Counters Readout

&=

IMMS

Implementation idea 1 (FSM based)

— FSM = Finite State Machine

— Describe your algorithm by means of
state transitions
— Common pattern for hardware description
— State is updated on each clock cycle
— Step-by-Step description of what should be done
— Is a sketch for implementation

— Can be used for throughput estimation

Diagram was created with mermaid.js

Idle

Start Measturement

Y

’ Initialize Counters

. Wait for Sample from ADC .

e

‘ Read Value from RAM ‘

' Perform Addition ‘

‘ Write Value to RAM ‘

.

Update Counters ‘

=

Measurement
ongoing

Measurement
Finished

= IMMS

Implementation idea 1 (FSM based)

— Throughput estimation

— How many data samples can | apply per clock cycle?

— How many clock cycles are needed for processing a new

data sample?
— Let’s assume 1 cycle per state transition
— 5 cycles per sample

— Maximum data rate of (Fclk/s)

— (Can we get faster?

Diagram was created with mermaid.js

[Idle

Start Measturement

Y

Initialize Counters

. Wait for Sample from ADC .

=

e

‘ Read Value from RAM ‘

' Perform Addition

‘ Write Value to RAM ‘

.

Measurement

ongoin

Finished

2

-/

Update Counters ‘

Measurement

IMMS

Implementation idea 2 (Pipeline)

— We can go for a more parallel implementation

— Independent units for each step

— Prerequisites:
— Dual-Port RAM (Independent Read/Write)
— Augment each sample with meta-data (here: counter value)

— Clean interfaces for each unit,

we use the handshake from before

Data —C >—
Valid [

= IMMS

Implementation idea 2 (Pipeline)

We can go for a more parallel implementation

ADC Input Handler Memory Fetch Adder Writeback

<adc_value>

v

<adc_value, idx>

A J

<adc_value, mem_value, idx-

Y

<avg_value, idx>

A J

ADC Input Handler Memory Fetch Adder Writeback

34 FPGA-based Sensor Signal Processing 24-Jun-24 ©

IMMS

Implementation idea 2 (Pipeline)

— Throughput:

— If each step needs 1 clock cycle:

Maximum data rate: Fclk

— latency:

— How long does it take to process an item

— Still 5 cycles

ADC Input Handler Memory Fetch Adder Writeback

<adc_value>

_
<adc_value, idx>
—
<adc_value, mem_value, idx>
>
<avg_value, idx>
B —
ADC Input Handler Memory Fetch Adder Writeback

= IMMS

Comparison

FSM
— Maximum data rate: Fclk / 5
— RAM type: Single Port

— Structure: Monolithic

— Needs additional state variables
— Verification only in a single block

— Easily readable code

Pipeline

Maximum data rate: Fclk
RAM type: Dual Port

Structure: Individual blocks

Overhead for inter-block signalling

Verification of individual blocks
=>» Easier to debug if you have a full set of TBs

Code is harder to understand

= IMMS

Things | did not cover

Actual realization of the components

Data formats

— From unsigned integer to arbitrary precision floats

Timing constraints and clocking schemes
Vivado or Quartus HowTo

Processor or Accelerator design

— There are special patterns for e.g. matrix multiplications

Bus systems like Whishbone, AHB, AXI,...

IMMS

General Hints for implementation

Choose the pattern with the lowest implementation complexity

Do not blindly implement but test your code in simulation

— Yes, this seems like extra effort, but will help you debugging

Choose your data formats wisely

— Do you really need full-double-precision floats?

Compare your hardware to your python code!

Do benchmarks ;)

IMMS

Where to start?

— Now that you have a brief overview
— What FPGAs are
— How to use them

— Some ideas about implementation patterns

— Get an FPGA board, install the software
and start coding!

= IMMS

Where to start?

— Now that you have a brief overview

— What FPGAs are
— How to use them

— Some ideas about implementation patterns

— Get an FPGA board, install the software

and start coding!

— After the Q&A and the break:

— Deep-Dive into implementation practices and pitfalls

= IMMS

Time for coffee...

IMMS Institut fiir Mikroelektronik- und Mechatronik-Systeme gemeinniitzige GmbH (IMMS GmbH)
Ehrenbergstr. 27, 98693 Ilmenau, Germany, Tel: +493677-8749300, Fax: +493677-87493 15, www.imms.de

Dr. Georg Glaser, georg.glaeser@immes.de, phone: +49 361 663 25 33

IMMS

I M M S INSTITUT FUR MIKROELEKTRONIK- UND
MECHATRONIK-SYSTEME GEMEINNUTZIGE GMBH

Part 2: Practical Hints, Good and Bad Ideas

Motivation

Actual coding is just a part of the work

Structure and experience are important

Not only experienced digital designers write code - so be aware of the basics
How to do things right?

Where are the pitfalls?

Use-Cases collected from real designs

Verilog-centric

Goal: A slideset that you can review before starting your first design ;)

= IMMS

Good Design Practices

Things that are known to work...

Basic schemes that should be always followed!
— If not, you‘ll have a hard time coding and debugging
— If not, debugging will cause you to miss deadlines

— If not, it may possibly introduce new bugs

Most of the rules seem obvious

Some of them seem to produce effort

— That's effort you‘ll save later!

Basic rule:

Your code should be easy to read & understand!

www.openclipart.org CCo

= IMMS

http://www.openclipart.org/

Good Design Practices: Communication

Talk to an experienced digital designer!

Be prepared if he or she asks you:

What does the code do?
How does the reset work?

What is the clock speed?

(maximum, max. trimming, corner, etc)

Are there internal clocks?

If he or she misses out something:

Talk to your digital designer!

https://openclipart.org/detail/294188/see-hear-speak-monkeys

IMMS

Good Design Practices: Modularity / Architecture

0k, that would be another training (and material for a good book)

Basics:
— Seperation of concerns should be considered:
Single-Responsibility Principle (SRP)
(Each block has exactly one specific purpose)
— Cohesion of components should be low
(Functionality should not depend on many additional blocks)
— Testability / Verificability
(There is a simple possibility to verify a block - unit testing)

— (Clean interfaces

(Use standards where possible, be always synchronous!)

— Do not repeat yourself

(Need for repetition is usually a sign for bad architecture)

= IMMS

Good Design Practice: Keep the implementation in mind!

— Just by example:
Which Flip-Flop type is this?

always @ (posedge CLK or posedge RST)
begin
if(RST)

else

end

That’s the D Flip-Flop with async reset!

= IMMS

Good Design Practice: Keep the implementation in mind!

— Just by example:
Which Flip-Flop type is this?

always @ (posedge CLK or posedge RST or negedge EN)

begin
if(CLK)
a<=0;
else if (RST)
a<=1;
else
a<=b;
end

That's the impossible Flip-Flop!

= IMMS

Good Design Practice: Keep the implementation in mind!

— Just by (real) example:
Which Flip-Flop type is this?

Impossible Flip-Flop
with self-generated
clock

reg CTRL = 1°bo;
initial begin

end
always begin

end
endmodule

#(1);
CTRL = 1°bo;

@(negedge RSTN or BIN, THERMO) begin

end

if (IRSTN) begin

end
else begin

end

CTRL = 1'b1;

#(100);

CTRL = 1°bo;

CTRL = 1'b1;

#(100);

CTRL = 1°bo;

IMMS

Good Design Practice: Keep the implementation in mind!

— Just by (real) example:
What‘s actually driving?

— Hint: May work in simulation

Asynchronous driver in
always block combined
with continuous driver
in assign

module mux4bit (INo, IN1, OUT, SEL);

input [3:0] INo;
output [3:0] OUT;
input SEL;

input [3:0] IN1;
reg [3:0] OUT;

always @(*) begin
0UT=4'ho; //Initialization

End
assign OUT= SEL 7 IN1: INo;

endmodule //end module mux4bit

Unpredictable in the best case,
worst case: Conditional Short

IMMS

Good Design Practice: Code Style

Format your Code!

Use comments (during development, not after)

— Describe purpose on high level

Keep your comments up to date
Do not comment code!

Keep your code clean

— If you change something,

always make your code better in quality
Name your signals and wires clearly
Name your states

Do not mix functionality in always-Blocks!
SRP!

Be consistent!

IMMS

Quick test for code quality

— Metric:
#(WTF)/Line-of-Code

— How many screen pages does your code need to show ist functionality?
A testbench with >500 lines is hard to debug even for simple bugs

A if/else-Statement > 2 screen pages demands for a mode elegant solution

— Develop a ,feeling” for code complexity that fits your collegues heads!

The complexity of undestandable code is limited by the reader (not by the designer)

Be kind to your verification engineer and future generations of designers!

= IMMS

Good Design Practice: Code Style

— Format your Code!

always@(posedge CLK_I or posedge RST_I)

begin

if(RST_I) begin
a<=0;

end

else

begin

for (i=0;i<19;i=i+1)
begin

G[i] <= IN;

end

end

end

IMMS

Good Design Practice: Code Style

— Format your Code! always @(posedge CLK_I or posedge RST_I)
begin
if(RST_I)
begin
a<=0;
end
else
begin
for(i=o0;i<19;i=1i+1)
begin
Gli] <= IN;
end
end
end

IMMS

Good Design Practice: Code Style

— Use comments (during development, not after)

— Describe purpose on high level // set EN to 1
EN <= 1;

= IMMS

Good Design Practice: Code Style

— Use comments (during development, not after)

— Describe purpose on high level // set EN to start conversion
— Be specific in WHY you do something, not how. // of CDC, will be reset in state X
EN <= 1;

= IMMS

Good Design Practice: Code Style

— Keep your comments up to date
WTF?!
— Do not comment code! .
// set EN to start conversion

/] of CDC, will be reset in state X
/] EN <= 1;

/| new version

EN <= 0;

— Use version control!

= IMMS

Good Design Practice: Code Style

— Keep your code clean

~ T you change something, // End conversion cycle

EN <= 0;

always make your code better in quality

= IMMS

Good Design Practice: Code Style

Do not mix functionality in
always-Blocks!
SRP!

always@(posedge CLK_I or posedge RST_I)
begin
/| Cares about 12C and CDC FSM
//12C Part 1
//CDC FSM

//12C synchronizer FFs

end

IMMS

Good Design Practice: Code Style

— Be consistent always@(posedge CLK_I or posedge RST_I)
begin
if(RST_I)
a=o0
else WTF?!
begin

for (i=0;i<19;i=i+1)
G[i] <= IN;
end
end

= IMMS

Good Design Practice: Code Style

— Be consistent! always@(posedge CLK_| or posedge RST_I)

begin
if(RST_I) begin
a <= 0;
end
else
begin
for (i=0;i<19;i=i+1)
begin
Gli] <= IN;
end
end
end

= IMMS

Good Design Practice: Code Style

Format your Code!

Use comments (during development, not after)

— Describe purpose on high level

Keep your comments up to date
Do not comment code!

Keep your code clean

— If you change something,

always make your code better in quality
Name your signals and wires clearly
Name your states

Do not mix functionality in always-Blocks!
SRP!

Be consistent!

IMMS

Good Design Practice: Testbenches

.. Should be always self-checking!

— If not: You have to manually re-validate your simulation every time you change sth!

— Be sure: Eventually you forget it (and beware of Murphy‘s Law for TapeOut)

Write a simple testbench before you start coding!

— Ensures good test-coverage

— Fall-Back plan, if something changes fundamentally

Keep your testbenches for later

— If there is a need for re-verification

Integrate your testbenches in a Cl environment

— Keep track of your design and discover errors early!

IMMS

Test Driven Development

— Why test?
— Verification

— Test, if system still works after small (virtually simple) changes

— Monitor the design state

= IMMS

Test Driven Development

— Kinds of tests
— Unit tests

Test behaviour of single design units without context (Just with inputs and outputs)

— Integration tests

Test integration of several units together =» Test interaction of units

— Acceptance tests

Test, if the built construct fulfils requirements

= IMMS

Test Driven Design Methods and Rules (Uncle Bob, ,Clean Code)

You are not allowed to write any production code unless it is to make a failing unit test pass.

You are not allowed to write any more of a unit test than is sufficient to fail; and compilation failures are

failures.

You are not allowed to write any more production code than is sufficient to pass the one failing unit test.

Test everything!!!

Automate your tests!!!

= IMMS

Architecture rules also apply to tests!

— Seperation of concerns should be considered:

Single-Responsibility Principle (SRP)

(Each testbench tests exactly one specific feature/issue)
— Cohesion of components should be low

(Functionality should not depend on many additional blocks around the DUT)
— Testability / Verificability

(Debugging does not require going through hundreds of waveforms)

— Clean interfaces

(Use standards where possible, be always synchronous! Use interface packages)

— Do not repeat yourself

(Need for repetition is usually a sign for bad architecture, copied test code over tbs violates SRP!)

= IMMS

Things to adopt

— Registered Outputs

— Clean sensitivity lists

— State Machines

— Synchronous Design! (Don‘t mess with async!)
— Consistent Blocking and Non-Blocking Assigns

— Code Documentation

IMMS

Registered Outputs

— Why put all outputs to Flip-Flops?
— Glitch-Free output signals

— Avoid asynchronous paths crossing several modules

(eliminates most timing issues)

— How?

— Assign outputs only in synchronous processes!
Always@(Clock[...])

— Do not assign outputs with asynchronous logic, e.g.
wire a = (CNT1==1)?1:0;
wire b = (CNT2==2)70:1;

assign OUT = EN?a:b;

= IMMS

Clean Sensitivity Lists

— Why?
— Reduce simulation / synthesis mismatches

— Clarifies misunderstandings for sync and async processes

— How?

— Synchronous process:
Always @(<pos/negredge CLK or <pos/negredge RST)
— Async processes:

Always @(*)

= IMMS

Clean Sensitivity Lists

— Bad async example

— Change on IN3 does not change value of OUT in simulation

.. but in synthesis

always @(IN1, IN2)
begin

OUT = IN17IN2:IN3;
end

= IMMS

State Machines

The best way to describe synchronous behavior

Why

— supported by all synthesis tools
How?
— Either one-process or two-process notation

— Choose only one notation

Name your states!

(If you did not understand what I'm talking about, take a look in first-semester digital design lectures!)

IMMS

Synchronous Design!

— Do everything synchronously

— Why
— Complete design flow relies on synchronisity and clocking constraints

— Verilog is just not powerful enough to handle e.g. synthesizeable async state machines
without additional tricks

— Asynchronous logic might cause glitches!

— Be synchronous and be happy with it!

= IMMS

How to design glitch-free blocks

— Asynchronous logic might glitch o
-l N z

— Due to different path delays @ O =

— Due to unstable inputs E

— Destroys your power budget and disturbs “:aj

control signals for analog components

https://openmoji.org/library/#search

Inputs
Outputs

_
_
_
_

74 FPGA-based Sensor Signal Processing 24-Jun-24 © % IMMS

https://openmoji.org/library/#search=cry&emoji=1F62D

How to design glitch-free blocks

— Place Flip-Flops at the all inputs and outputs of a block)
=

— Keeps asynchronous paths short %

— Prevents asynchronous paths to spread along several modules é

— Makes the output glitch-free %

=

Outputs

https://openmoji.org/library/#search

75 FPGA-based Sensor Signal Processing 24-Jun-24 © ﬁ IMMS

https://openmoji.org/library/#search=happy&emoji=1F60D

Code Documentation

Code Documentation is like working in the kitchen:
Cooking and eating is more fun than doing the dishes

A lifehack from youtube:
If cleaning is easy, the probability of doing it is higher.

Hence: The effort for code documenation has to be as low as possible

In general:

Document what you implement, why and whatfor? and especially: Why like this?

— Non-obvious design descisions are of special interest

= IMMS

Code Documentation

— Integrate Documentation in your design repository!
— Write your doc in parallel to your code
— Hence, the doc will always match your recent code version

— 0k, it‘s about discipline

— Tools

— Markdown can be versioned and is very powerful

— Most editors have good plugins for Markdown, e.g. Markdown Preview Enhanced in VSCode supporting

State charts, Flow charts, waveforms, etc.

— Your markdown can be converted to different format for getting your documentation into a datasheet or similar

= IMMS

Things to avoid

— No combinational loops
— No unintended Latches
— No Delay-based Design
— No Multi-Assigns

— Unconnected Inputs

IMMS

No combinational loops

— Endless-loops in zero-time
— Causes the simulator to hang forever
— Hard to debug
— Leads to (unstable) oscillating digital systems after synthesis

— Just don‘t do it.

Example:
wire a,b;
Assign a = ~b;

Assign b = a;

= IMMS

No unintendet latches

— Only instantiate latches if needed, be aware of latch descriptions!

— Unintended latches may cause simulation/synthesis

problems and destroy timing!

/[synthesizes to latch
Always @(*)
Begin
if (enable1)
a=IN;
end

//synthesizes to combinational logic
Always @(*)
Begin
a=o;
if (enable1)
a=IN;
end

IMMS

No delay based design

— Delay elements are subject to process variations
— Destroys timing analysis

— Just don‘t do it.

/| A very bad edge detector

/| pulsewidth on c is completely unpredictable and not included
// in timing analysis

Assign a= #1 b;

Assign ¢ = (al=b);

Always @ (posedge ¢)

[..]

= IMMS

No Multi-Assigns

— Never ever assign a signal from two processes

— Best case: Result is unpredictable

— Worst case: [Conditional] Short (multiple drivers on one line)
Always @ (posedge clk)
begin
[..]

End

Always @(posedge clk2)
a<=0;

= IMMS

Unconnected Inputs

— Best case: 0

— Worst case: transient random

— Connect everything to defined levels!

= IMMS

Version Control, Bug Tracking, Code distribution,...

Use Cases

Basics of git

Use model for Verilog development

Gitlab

Issue Tracking

Continuous Integration

IMMS

Use cases

— Version control
— Code reviews
— Blaming someone with a bug ;D

— Tracking your progress (or: Why did it actually work yesterday?)

— Code distribution

— Supplying every developer with the recent code version

(without manual copy stuff)

— Releases and Cl

— Execute checks on every commit

= IMMS

Basics of git

How to initialize a git repository?
git init .

How to commit a new revision of a file?

git add <yourfile.v>
git commit

— Several files can be commited together

— Please use meaningful commit messages!

Cheat sheet:
https://about.gitlab.com/images/press/git-cheat-sheet.pdf

IMMS

https://about.gitlab.com/images/press/git-cheat-sheet.pdf

Basics of git: Working with remotes

A remote is a centralized git repo (e.g. at our Gitlab server)

Cloning a remote from the server

git clone <your url>

How to push your changes to the server (after commit)
git push

How to get recent changes from the server?
git pull

Left out issues: Merges, Branches,...

— Hard to teach on slide, but easy to use

— Solves the problem of working on a project with a team

= IMMS

Working with Gitlab - Issue Tracking

— Make your digital guy‘s life easier by describing your requirements or his bugs

— Write notes that he gets onto his todo-list

— Hints:
— Give meaningful names
— Extensive descriptions

— Track progress

— Just a tool for organization, not for communication

=» You need to talk to people

= IMMS

Working with Gitlab - Continuous Integration

What for?

— Monitor your design‘s state by running the tests automatically
— Run tests in a fixed schedule and saves results

— Recognize errors early and fixed imidiately

How?
— Define scripts in gitlab_ci.yml
— Apply a run schedule

— Observe the results!!!

Prerequisites

— Self-checking testbenches

— Automated run-script (avaliable)

IMMS

Summary & Take Home Messages

— FPGA Development exhibits potential for
— Fast execution of parallelized algorithms
— Real time processing
— Direct stream processing

— But... you have to invest additional effort

— Design flow
— Simulation & Testing

— Bring-up of a hardware platforms

— Common challenges shown here... there is more ;)

= IMMS

Together with you, we would like to work on the next batch of upcoming ideas!

IMMS Institut fiir Mikroelektronik- und Mechatronik-Systeme gemeinniitzige GmbH (IMMS GmbH)
Ehrenbergstr. 27, 98693 Ilmenau, Germany, Tel: +493677-8749300, Fax: +493677-87493 15, www.imms.de

Dr. Georg Glaser, georg.glaeser@immes.de, phone: +49 361 663 25 33

IMMS

	Folie 1: FPGA-based Sensor Signal Processing
	Folie 2: We connect the digital to the analog world
	Folie 3: We transfer results from basic research into applications
	Folie 4: Sites in Thüringen, Germany
	Folie 5: We connect the digital to the analog world
	Folie 6: We bring research results into application: IMMS as R&D and transfer partner
	Folie 7: We bring research results into application: IMMS as R&D and transfer partner
	Folie 8: IMMS in figures (*31/12/2022)
	Folie 9: Microelectronics department
	Folie 10: FPGA-based Sensor Signal Processing
	Folie 11: Part 1: Introduction & Basics
	Folie 12: What this lecture is (not) about
	Folie 13: Short overview…
	Folie 14: What is an FPGA?
	Folie 15: Why and when is it useful?
	Folie 16: Should I go for an FPGA?
	Folie 17: Where to learn good Verilog/VHDL?
	Folie 18: Interesting Literature
	Folie 19: Some terminology
	Folie 20: FPGA Work Flow
	Folie 21: An example algorithm
	Folie 22: An example algorithm
	Folie 23: An example algorithm
	Folie 24: An example algorithm
	Folie 25: A system level perspective
	Folie 26: A system level perspective
	Folie 27: A system level perspective
	Folie 28: A system level perspective
	Folie 29: Interfacing
	Folie 30: Implementation idea 1 (FSM based)
	Folie 31: Implementation idea 1 (FSM based)
	Folie 32: Implementation idea 1 (FSM based)
	Folie 33: Implementation idea 2 (Pipeline)
	Folie 34: Implementation idea 2 (Pipeline)
	Folie 35: Implementation idea 2 (Pipeline)
	Folie 36: Comparison
	Folie 37: Things I did not cover
	Folie 38: General Hints for implementation
	Folie 39: Where to start?
	Folie 40: Where to start?
	Folie 41: Time for coffee…
	Folie 42: Part 2: Practical Hints, Good and Bad Ideas
	Folie 43: Motivation
	Folie 44: Good Design Practices
	Folie 45: Good Design Practices: Communication
	Folie 46: Good Design Practices: Modularity / Architecture
	Folie 47: Good Design Practice: Keep the implementation in mind!
	Folie 48: Good Design Practice: Keep the implementation in mind!
	Folie 49: Good Design Practice: Keep the implementation in mind!
	Folie 50: Good Design Practice: Keep the implementation in mind!
	Folie 51: Good Design Practice: Code Style
	Folie 52: Quick test for code quality
	Folie 53: Good Design Practice: Code Style
	Folie 54: Good Design Practice: Code Style
	Folie 55: Good Design Practice: Code Style
	Folie 56: Good Design Practice: Code Style
	Folie 57: Good Design Practice: Code Style
	Folie 58: Good Design Practice: Code Style
	Folie 59: Good Design Practice: Code Style
	Folie 60: Good Design Practice: Code Style
	Folie 61: Good Design Practice: Code Style
	Folie 62: Good Design Practice: Code Style
	Folie 63: Good Design Practice: Testbenches
	Folie 64: Test Driven Development
	Folie 65: Test Driven Development
	Folie 66: Test Driven Design Methods and Rules (Uncle Bob, „Clean Code“)
	Folie 67: Architecture rules also apply to tests!
	Folie 68: Things to adopt
	Folie 69: Registered Outputs
	Folie 70: Clean Sensitivity Lists
	Folie 71: Clean Sensitivity Lists
	Folie 72: State Machines
	Folie 73: Synchronous Design!
	Folie 74: How to design glitch-free blocks
	Folie 75: How to design glitch-free blocks
	Folie 76: Code Documentation
	Folie 77: Code Documentation
	Folie 78: Things to avoid
	Folie 79: No combinational loops
	Folie 80: No unintendet latches
	Folie 81: No delay based design
	Folie 82: No Multi-Assigns
	Folie 83: Unconnected Inputs
	Folie 84: Version Control, Bug Tracking, Code distribution,…
	Folie 85: Use cases
	Folie 86: Basics of git
	Folie 87: Basics of git: Working with remotes
	Folie 88: Working with Gitlab – Issue Tracking
	Folie 89: Working with Gitlab – Continuous Integration
	Folie 90: Summary & Take Home Messages
	Folie 91: Together with you, we would like to work on the next batch of upcoming ideas!

