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Part 1: Key Take-Aways

@ What's behind this?
~Breaking” Shannon-Nyquist: how?

What is the role of sparsity?

@ How do we measure?
What is the role of incoherence?

What is the role of randomness?

@ How do we reconstruct?
How to find the solution when there are infinitely many?

How to solve the reconstruction problem efficiently?
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Recap: Shannon-Nyquist sampling

® Shannon-Nyquist-Whittaker theorem (SNWT) T /‘\\ﬁ\ —

\ T4 Tww?’

Va(t) € Bp: w(t) =Y a(n/B) sinc(xltB—n])

Amplitude [A.U.]

t [s]

Compressed Sensing: Measure signals at sub-Nyquist rates w/o loss of information?
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Compressed Sensing: Intuition

M SNWT: sufficient condition, but not necessary. We can violate it if
We have prior knowledge

We change the way we sample
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Example

® Bandlimited Signal (< 500 Hz)

Shannon-Nyquist: N = 1000 samples per second sufficient for any possible
signal

What if we knew the signal is perfectly sinusoidal?
N = 3 samples sufficient (conceptually), if placed properly
Example (jupyter)
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Compressed Sensing: Intuition

® SNWT: sufficient condition, but not necessary. We can violate it if
We have prior knowledge
We change the way we sample

I(e} rAW => JPEG: ca. 1/10-1/50*

\Qj PCM => MP3: ca. 1/6*
@ Ultrasound: ca. 1/10-1/500

B Nyquist-Samples often have redundancies

Signals have structure
Only a part of the signals is relevant !

Often, prior knowledge is available * ylossless”: ca. ¥2

m So, we can do it, should we? P O
Yes: Sub-Nyquist-Sampling has many practical advantages T =D
\ £ % [ J
Saving: time, energy, data rate/size B % .
Very application-specific 2
Y app P I A\

David Brady: ,,One can regard the possibility of digital compression as a failure of sensor design. If it is
possible to compress measured data, one might argue that too many measurements were taken.”



What do we gain?
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®m Potentially: reduction of measurement time

Depending on application, e.g. for MRT/CT, imaging

B Potentially: reduction of energy consumption -«
(a) Data acquisition itself (e.g. slower system clock) "E/;_\ )
N
(b) Data transmission, esp. for autonomous sensors ¢
B Potentially: reduction of data rate
y EPA Y=Y A0

Interesting for high rate applications (,,fast pre-sorting”)

B Reduction of total amount of data (yes, but) 2

Better: do not record irrelevant data in the first place
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Step 1: Prior knowledge => sparsity

B Basic idea: Set of possible (relevant) signal parts = known.
Observed signal = combination of a few of these.

For example...

Harmonics Spikes Both! ~ etc
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cRY: supp{z} =K < N
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Step 2: Measurement => Incoherence

M Generalized sampling (linear) fdf Vs
yln] = /pn(t)y(t)dt p()

B Special case ideal sample&hold t_j\j/%i >
pn(t) = 6(t —nto) = y[n] = y(nto) — A =

B How to choose p,(t)?

Example (jupyter) A

=> Incoherence is the key!

=> Randomness as a natural source of incoherence
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Random Matrices as a Measuring Kernels

B How to build incoherent bases without knowing the basis?

B “Randomness” is incoherent with any “structure”!

0.12
—— N=2
0.10{ —— N=3
—— N=10
5 0.081 —— N=30
t = —— N=100
y ©
2 0.06
LAV random S
£ 0.04
vector
0.00 - , 1 ' \
0 20 40 60 80

Min. angle [deg]
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Step 3: Reconstruction

® Linearity: sparse model v measurements v/

Mapping from coefficients to measurements is linear. Solve LSE!

d — \II . b Sub-Nyquist: M < N => underdetermined

(M.1) (M,N) (N,1) But: supp{z}=K <M <N

=> Seek out sparse solution!

x* = arg min supp{x}
£r

N
IZlle, = {[ D loxl?
k=1

s.t. d=W.x

However: This problem is NP hard.
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Step 3: Reconstruction

B Linearity: sparse model v measurements v’

Mapping from coefficients to measurements is linear. Solve LSE!

d — \II . b Sub-Nyquist: M < N => underdetermined

(M,1) (M,N) (N,1) But: supp{z} =K <M <N

=> Seek out sparse solution!

x* = arg min ],

lle, = JZ [P

s.t. d=W.x

This problem has efficient solutions.
Under certain conditions, it gives the same solution as the 10 problem.
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Step 3: Geometric intuition

7

x* =|arg min ||z,
£
S.t. d=V - x
p=0.25 p=05

A

<

p=1
M Sparse solutions are “on the axes”.
For p < 1: “arms” of the p-norm balls find them.
For p = 1: p-norm ball is convex. N
. . lllep = 2| > awl?
=>p = 1is the best compromise. —
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Escape Velocities for the L1-ball

— vertex = 1-sparse
— odge = 2-sparse
| —cide = 3-sparse

distance to origin

- |

0 05 15

II norm

B Vertices move faster than edges, which move faster than sides

B They correspond to 1-sparse, 2-sparse, and 3-sparse respectively

\
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Identifiability: LO vs. L1

1 M+1
B In general, for 10 we have K < E(k-rallk(‘l’)}wL 1) < 5
Y

Kruskal-rank > r if all sets of r
columns are linearly independent

M>2K+1

NB: there are 2K degrees of freedom!
(support indices + amplitudes)

B whereas for |1 the bounds are of the form

M>C-K-log(N/K)| 7
\ 1N
Y

1 “penalty”
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Practical solvers

B Two equivalent formulations
BPDN' min||x|; s.t. |d— ¥x|z<e

LASSO? min|d — ¥x||> + Al|x|;
® The zoo of algorithms is gigantic. Two commonly found examples

OMP3: to fit ||d — ¥x||, iteratively, select matching columns in a
greedy manner, project residual data on the complement subspace

'BPDN = Basis Pursuit DeNoising
2LASSO = Least Absolute Shrinkage and Selection Operator
30MP = Orthogonal Matching Pursuit

\
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OMP example for a three-sparse problem d = ¥x
ny = argmax |d” - 9, 2 = Mg IaX | 4| Ma == BRI |d3 9|

\, dl — d s \Iynl‘I;r;ld j\, dg =d-—- ‘I'["‘lv"2:‘1’[+m,n.g]d

Step 3

] S - -

0.05

Correlation

005¢-

Coefficients

\

~ Fraunhofer

IZFP



Practical solvers

B Two equivalent formulations
BPDN' min|[x|[; s.t. ||d— x|y <e
LASSO? min|d — ¥x||> + Al|x|;

® The zoo of algorithms is gigantic. Two commonly found examples

OMP3: to fit ||d — ¥x||, iteratively, select matching columns in a
greedy manner, project residual data on the complement subspace

(F)ISTA%: to minimize ||d — ¥x/||2, perform gradient steps, regularize
by (soft) thresholding the coefficients.

'BPDN = Basis Pursuit DeNoising
2LASSO = Least Absolute Shrinkage and Selection Operator

30MP = Orthogonal Matching Pursuit
4FISTA = Fast Iterative Shrinkage and Thresholding Algorithm

\
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Iterative Shrinkage and Thresholding

® To minimize ||d — ¥x||3 consider its gradient
|d — x| =d’d —dT¥x — xT ¥ d - xT¥TPx
= Vy=29'd - #1¥x = 2¥'(d — ¥x)

® Gradientstep x + x+ p®T(d — ¥x) AW,

® But then xis not sparse. Regularizer? Soft thresholding: :

X + 7(x) 7— .

Apply momentum methods

M Fast?

Smart step size adaptation

\
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But how do | measure incoherently?

—IS&H _/ —’@_‘/.df _/
p(t)
B That depends...

Localized signals (spikes) => extended
sampling functions (MLBS, harmonics)

Random Demodulator, MWC, Fourier sampling

Highly correlated signals => subsampling

Spatial / angular subsampling, irregular arrays
Integral sensors => ,,Scrambling”

Single pixel camera, shattered lens imaging, coded aperture

Light DMD+ALP Board

Scene

o

Thickness ~ 0.5mm

—

I, “imaging volume ﬂ

Sensor

+1— Mask-sensor inole Ultrasoun
assembly transmitter/receiv
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Bigger picture: latent space representation

B Behind the scenes: existence of efficient latent space representation
In CS obtained through linear projections.

NB: also a common component in ML/DL (self-attention in
transformers, latent representation in autoencoders)

Their advantage: not limited to linear compression

® NeuEt:l:lor:i;t‘mgrork Neul:t)reaclol\(ljtirt]v?rork °
o [ d ® ®
B Autoencoder as a CS sensor? ] $ Z°>:4°Z =
./0—0/ ‘\o—o\__\.
Sure, why not. oot

Sensible especially if you can
implement the encoder part
(after freezing the weights)
in hardware (FPGA?).

https://Iss.fnal.gov/archive/2020/slides/fermilab-slides-20-121-e.pdf

\
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Applications (Selection)

X-ray CT Ultrasound

g(t)
1 7
-Lo t : \
0
Tx pulse
Rx signal

1: Réntgenn ohe
»  Begeisternde 3T-Pe rfnmam:e — 2:Kegelstral [\
t
T

3: Ob ek!

S o—— ) bl / Fraunhofer b |
s Eldar et al [2015] |

mit GO—TEchnuiugien E
»  Begeisternde klinische Méglichkeiten mit 3T
MACNETOM Vids d integri Compressed Sens| Iﬁ]
A und integriertern Compres: L )}
| AN

Hyper spectral imaging Radar

Ultrasonic
probe

N

firefly [flexpress]

Recomiructed mage

etc.

Kubal etal 2021 Tl -l = Eldar et al [2017]
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Part 1: Key Take-Aways

@ What’s behind this?

Shannon-Nyquist is sufficient, but not necessary. With prior
knowledge, perfect reconstruction from fewer samples is possible.

We formalize , prior knowledge” through sparsity, as a measure for
signal complexity.

@ How to measure?
We need incoherent measurement functions.

Pseudo-randomness can be a source of incoherence.

@ How do we reconstruct?
Look for the one signal that maximizes sparsity. min ||x]|, s.t. y = A x

Can be solved efficiently through relaxation. L
min ||x||, s.t. y=A x

\
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and related tales

Part 2: Compressed Sensing in Ultrasound
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Ultrasound NDT ,,powered by” Compressed Sensing
Improve US-NDT inspired by innovations in the CS field

Data reduction Enhanced reconstruction

EEEEEES A

Shmsmss: . ' Accuracy

EEEEEE
lllll
EEE

=> Design of Experiment problem: where/how to sample optimally?

m Q1: Temporal sampling: how? ‘
— Fourier subsampling '§>
m Q2: Spatial sampling: where?
— Spatial subsampling fur synthetic aperture, sparse array Design Speed

A 4

m Q3: Spatial sampling: how?

=>S fth b lied to full led data...
— Optimal excitation, coded signals ome oTthese can be applied to Tully sampied data

\\
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Compressed Sensing for Ultrasound: Intuition

m In CS we change the way we sample analog signals to avoid capturing redundancy
=» reduce data size, data rate, acquisition time, energy

= g ! ' ' 0.01 | 50 :
é ‘“ " ~ 0.005 I J| § ‘
I ARSEETR | skl )
50 - i | =0 .
0 5 10 15 20 25 30 35 W 4 3 0 5 10 185 20 25 30
t{us] t[ps] tTuel
40 T T T T
@ 20 | 2 i
[ — lh-—| s
£ -20 “I ‘i 1 ¥ 207
e 5 10 15 20 25 30 35 0 5 ‘ID 15 QIE‘ 25 3I°
t{us] t[us]
m Observation 1: A-Scans are often sparse in time domain. Sampling many zeros is redundant | _
=» we can measure in frequency domain instead (i.e., “a few” Fourier coefficients) S“bsampl'“g
) _ . — in space and
m Observation 2: adjacent A-Scans highly correlated frequency
=>» we can apply subsampling (to some degree) )

m Note: requires suitable reconstruction method min || A x—b ||, + 1 ||x||, (e.g., FISTA)
Fraunhofer

TECHNISCHE
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Compressed Sensing in Time

Why do we talk about Fourier sensing so much? What is the link?

m Consider the generalized linear sampling operator s = / ()b (t)dt /‘dt I
& b,(t)
m (aWLOG), assume that x(t) is limited in time [0, T]. => WLOG choose b, (t) to be time-limited as well.

lt] = Z X[fe 2T b, (t) = Z By[fle= 224/ T vVt € 0,7 ;\’" e ;‘A—,H
' 4 ¢/ \/ ' T l\,," t
m Then, it is easy to see that I L4 f r o4 T T T '

B = [ (Opn(t)dt = 3 X[0]B, (1
= b Y,

i.e., our samples are linear combinations of the Fourier coefficie‘nts of x(t). Our choice of b,(t) determines the weights.
m Special case By, [l] = 6[{ — my,] = yn = X[my,)]

\\
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Fourier Sampling: Architectures

How to build a Fourier Subsampling Sensor? m Digital FPGA-based compression
_— — e.g., FFT+subsel., chirp-Z, Goertzel

m Bank of analog narrowband (I/Q) filters

Nyquist FPGA
fdt s yquist )

m Analog computing DFTs, ... = @EEE
m Modulated Wideband Converter (MWCQC) T —C . EEEE

— Delivers an (invertible) linear combination of FC

J. Liet. al., PRIME 2022 " m

exp (jw,t)

pi(t)

TIT‘ “2 N2
0 %‘EEJ%
5T, Im-
m sequences M3 N3
o, - m XG-1 + XF-1 (ASIC)
/ Y1) Figure 3. Circuit implementation. The left board realizes the analog mixing
5 - and filtering. A sign waveform alternating at 2 GHz is implemented in the
= right board.
T, —periodic p;(t) gives the desired aliasing effect R ! M E
NEEN Mt and man TECHNISCHE UNIVERSITAT _______
T 0 g B ILMENAU ~ “S522:=¢
Figure 2. The modulated wideband converter
https://www.weizmann.ac.il/math/yonina/software-hardware/software/sub-nyquist-sampling-modulated-wideband-converter I

m. TEcHNIsCHE Z Fraunhofer
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Fourier Sensing vs. Scrambled Fourier Sensing

1000 .
— Original
m Architectures 800 | —Scrambled] |
Energy
600 |
Fourier .
Uniform
(FET) Select 400 |
Random 200
(Energy)
. 0 |
Fourier : 0 5 10 15 20
A-Scans (FFT) Select Uniform ¢ [MHZ]
Observ. Selection DFT (FFT) A-Scaambling
Recovery: for ny > Csmaxd~2log?(1/6) log Ny 10g(Smax) 108 (Smaxd) E .....'-.

scrambled Fourier sensing is guaranteed to recover the A-Scans
with probability e~ C20,

= [ [

"

™

Page 6 25.06.2024
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Other variations of Fourier sensing
MWC, why is it related?

m Build
— Sequence generator for PN sequences p,(t)
— analog multiplier + integrator

m What you get is y = B x, where x are the desired Fourier coefficients and B depends on your sequences

Pt T, [G:0000CO ]
_é N N AR O] 5 m
T D . E‘
D I2C EQGEN DIV D
x(t) . m sequences D [:I
() i | lclerooocol |
_é | -+ /— yn[n] @

T,—periodic p;(t) gives the desired aliasing effect

I”El;” M and many
6 1, 0 T,

more...

CLK4

Loap T o
Figure 2. The modulated wideband converter e e
TECHNISCHE =
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When to choose what?

m With so many architectures in place, what should we choose?
— It depends on the application.

m For analog hardware implementations
— MWOC is a tried and tested concept that scales well.
— For very few Fourier coefficients, a direct Fourier sensing may be even simpler.

m For quasi-digital implementations (FPGA)
— If we know where the signal energy focusses => Fourier sensing
— If we don’t (multiband/wideband) => Scrambled Fourier sensing
— BTW: Optimal FC selection is an interesting Design of Experiment problem!

TECHNISCHE
« UNIVERSITAT
Page 8 25.06.2024 ILMENAU
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Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction

m Specimen: ,MUSE", recorded with an automated scan
0.5mm grid, 2 MHz, immersion

m. TecHmscue Z Fraunhofer
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Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction

m Specimen: ,MUSE", recorded with an automated scan
0.5mm grid, 2 MHz, immersion

Scrambled Fourier Sensing

i £
Top view g 90 * e

i £

(Cimage) il

o LR

Side view g
(Bimage) &% W
I
0 25

Page 10 25.06.2024

True SAFT fixed varying
40 - 2 -
o) - : =
O - = -
E 20 4 3mm - d .
O - - -
O - __:-_ Y
0 | | | |
0 10 20 0 10 20 0 10 20 0 10 20
mm mm mm mm
n, = 2000 n.=1
@
. eee -
100 125 150 175

m. TecHmscue Z Fraunhofer
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Ultrasound NDT ,,powered by” Compressed Sensing

Improve US-NDT inspired by innovations in the CS field

Data reduction

rEEEEEG
EEEEE
llllll
EEEEEE
lllll
EEE
R
L1l

=> Design of Experiment problem: where/how to sample optimally?

m Q1: Temporal sampling: how?

— Fourier subsampling

m Q2: Spatial sampling: where?

— Spatial subsampling fur synthetic aperture, sparse array Design
m Q3: Spatial sampling: how?

— Optimal excitation, coded signals

Enhanced reconstruction

T Accuracy

SN

Speed

A 4

=> Some of these can be applied to fully sampled data...

Page 11 25.06.2024
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A particularly relevant usecase: Full Matrix Capture

m Elements transmit sequentially, receive in parallel

m For M elements: i i i i
— M measurement cycles \M
— M? A-Scans (M x M x N; samples)

m Drawbacks:
— M cycles need time

<
— M parallel RF chains: hardware complexity «\y‘
— Data size O(M?)

Receiver

Transmitter

»
»

UNIVERSITAT Fraunhofer
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A particularly relevant usecase: Full Matrix Capture

m Elements transmit sequentially, receive in parallel

m For M elements: i i i i
— M measurement cycles \M
— M? A-Scans (M x M x N; samples)

m Drawbacks:
— M cycles need time
— M parallel RF chains: hardware complexity
— Data size O(M?)

m Spatiotemporal compression = 3
— Due to strong spatial correlation: spatial = E
subsampling as a valid CS strategy ™ 2

S £

\\

UNIVERSITAT Fraunhofer
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A particularly relevant usecase: Full Matrix Capture

m Elements transmit sequentially, receive in parallel

m For M elements:
— M measurement cycles
— M? A-Scans (M x M x N; samples)

m Drawbacks:
— M cycles need time
— M parallel RF chains: hardware complexity
— Data size O(M?)

50

Amplitude

-50

THTRE
N |

m Spatiotemporal compression < 3 0 20 30 40
— Due to strong spatial correlation: spatial S E FMHz]
subsampling as a valid CS strategy ™ 2 7|$<‘
. . . . . ©
— Sparsity in time => subsampling in frequency = = A
m Overall: (M, M, N7) => (M, My, N;) MS M
RX
?

Page 14 25.06.2024
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Spatiotemporal compression strategies

m 3-D separable design

— For each selected TX, use the same
RX channels and Fourier bins

o TX

> RX

3 Fourier
s X

O

) RX

t .
S Fourier

m 3-D joint design
— For each selected TX, allow a new set

of RX channels. For each TX and RX,
allow new Fourier bins

© X

> RX

3 Fourier
s X

O

) RX

t .
S Fourier

Page 15 25.06.2024
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= = 119 | —— 3-D Joint
How to solve the 3-D design of experiment problem? —— 2.0 )oint
10392 1— —— 3-D Separable
It depends on the complexity... 1083, —— 2D Separable
- 1065. !
1047- ]
Problem size M 1024
— 1041
Exhaustive Greedy Genetic Algorithms ML-based: & 16 20 @ & B B
search search Annealing Learn-2-Select Problem size (M,M) -> (M/2,M/2)
Deep Probabilistic Subsampling Separable design: () - () (")

m Criterion to choose? Joint design () (IéIWR)MT ' (%E)MTMR

— Many choices: task-based end2end, image quality, coherence, ...
— Our of our favorites: information theory based criterion: Cramer-Rao Bound
o Quantifies ultimate uncertainty (variance) about scattering location

|

— For point-wise criteria: Minmax approach => find pattern with best worst-case ceccsvccccc e
performance il
min max CRB G eeecceecnees
mgrx mrxnr {x,z}€ROI c0co0co0co0o0o000000o0
TECHNISCHE =
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Design of Experiment via Cramér-Rao Bounds (CRBs)

m Treat the problem as estimation of point scattering locations (x,z):

CRB delivers algorithm-independent bound (“information content”) X

YA
— Forward model: Y = f(il?s, Zs)
— Estimator: &g, 25 = T'(y)
— Unbiasedness: E{is} = s
E{%} = 2
— Then:
COV{[zs,2]' } =C =J!
m We can show that
B [ (sin By, + sin B, )? (sin By, + sin By, ) (cos By, + cos B,,)
J = O'mzm | (sin By, =+ sin B, ) (€08 B, + €08 Biny ) (coS B, + €08 B, )? ]-G2(m1, ma)
' [ ) Gas(mL m2)2 Gw(m13m2) ' Gz(mlamQ)
tes mlz,v;lz _Gm(m1,m2) ' Gz(ml,m2) Gz(m1,m2)2

m CRB can be used to build spatial subselection strategies (exhaustive search / greedy)

\\

TECHNISCHE
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Sample result: DOE through CRB minimization

Exhaustive search

m M =15 elements

1
——~ Max — choose 2 TX, 2 RX
_ ———Min (50x compression)
E 103 —(1,2)x(1,2) ® 1 mm pitch
S : ——(14,15)x(14,15) ~
0 102 | (7.8)x(8.9) m Cc=5900 m/s
% 5 —(1,15)x(2,14) m Gaussian pulse T =2 ps, Py=0.1
"g 10! m Single defect z, = 15 mm
o \/\/ \/\/ m Gaussian apodization
100 Nl B NS & .
((w—mm)2+22)
. G 33'7 z) = e_ z2 tan2 @
- 0 c m (T, 2)
x [mm] it 1
min max trC
{mrx},{mrx} Ts,2s [ n 1> mm

J

Page 18 25.06.2024
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Sample result: DOE through CRB minimization

Exhaustive search

min max trC
{mrx} {mrx} ®s:2s

m M =13 elements

T Max | ~ choose 5 TX, 5 RX
— 102} ———Min -; (7x compression)
E ? —(1,3,8,12,13)x(1,2,6,11,13) | ® 2 mm pitch
E —(2,3,4,5,13x(1,9,10,11,12) | _ _
m (3.456.13)x(1.8.9.10,11) || ™ C¢=2900m/s
= m Gaussian pulse T=2 ps, Py=0.01
2 100} "
§ : m Single defect z, = 15 mm
@ m Gausssian apodization
((w_mm)Z_'_zZ)z
10 10 0 10 G(z,2) =€~ Zwn?0
X [mm] PELLIEIEtTEES
( 13 15 mm
Page 19 25.06.2024 m PIEE)?EREI:T\% % Fraunhofer
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Greedy selection approach in 2-D

m Separable 2-D design m Joint 2-D design

- wame penre

X

\\

ﬂl . UNIVERSITAT Fraunhofer
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How to evaluate?

Criterion: Point Spread Function

1) Generate ideal point scatterer (x,z) 2) Generate B-Scan (forward model) 3) CS measurement + image reconstruction

= Width of the PSF provides a measure of achievable resolution (in a linear imaging device)
=>» Cross sections to study vertical / horizontal resolution
=» Area under the PSF = , Array Performance Indicator (API)”

Nthresh ’ A:{ z A:
A2

C

API =
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Simulation results
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Measurement results: test specimen

Libeg S6akde

®  Sensors
= = =Visible Region

IS = = =ROI

........

0
20 4
40 -
T .
E
< 60 4 e
a
[
o
-» = - —40
80 -
-
gl - —50
100 - \
3 - \/ 60
—40 -20 0 20 40

Horizontal position [mm]

No compression

105 mm

75
95 mm

110mm

120 mm

Depth [mm]

0 0
20 -10
S -20

i
L —30
60 :

. - —40

80
- —50

100
14 i \/- ~6°

-40  -20 0 20 40

Horizontal position [mm]

>12x spatial comp.
>7x temporal comp.

(100% of the data) Hsmm], ¥ B mn (1% of the data)
TFM FISTA
TECHNISCHE =
Page 23 25.06.2024 m i’m?ﬁ'ﬂﬁ % Fraunhofer

IZFP



Outlook: DOE via Machine Learning

m Realistic problem sizes (M = 64, 128, ...): exhaustive search fails (exponential complexity), greedy methods fail (local minima)
m |dea: leverage power of neural networks to find good solutions to the non-convex problem
m Problem: selection problem is combinatorial, non-differentiable . o / e
Image data Image
. . _ . i | A
Solution: Gumbgl soft-max reparametrlzatl9n .'tI‘IC.k _x,  forward Y, subsampling —Y Reconstruction —Z—,
— Rows of Phi: samples of the categorical distribution model
m Cost function: final image reconstruction error! P (DI / (LISTA layers)
m Estimation method: Learned ISTA
Gumbel M Soft
(a) Iterative shrinkage-thresholding algorithm (ISTA) Weights max
—
ul™ —» Ag | o > ulm+1]
1 |
(b) Learned iterative shrinkage-thresholding algorithm (LISTA) Gradient [
_________________________________ :
YT 3 7 } : t
ul?) = #1y | o = H = T e S| To s M) _
| : > Loss function <
e e e { Single large DNN |- = = == = = = = = = '

trainable

\\
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Outlook: DOE via Machine Learning (®)
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Comparison with other designs ! 8 16 24 32 40 48
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m Comparing reconstructed images performance m Evaluating CNR of 1000 images
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Fig. 2. Comparison of reconstructed images Fig. 3. Comparison w.r.t. CNR
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Summary

m Compressed Sensing for NDT: very promising!
— Reduction of scan time, data rate, power consumption

m Successfully demonstrated in X-ray CT (inline inspection)

m Ultrasound:
— data reduction in time and space
— real-time reconstruction for assistance systems

m Challenges ahead, e.g.,
— Complex forward models, e.g., Ultrasound tomography
— data-driven + physics-driven processing
— Lack of training data: artificial training data generation

\\
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