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Part 1: Compressed Sensing Primer



Part 1: Key Take-Aways

 What‘s behind this?

 „Breaking“ Shannon-Nyquist: how?

 What is the role of sparsity?

 How do we measure?

 What is the role of incoherence?

 What is the role of randomness?

 How do we reconstruct?

 How to find the solution when there are infinitely many?

 How to solve the reconstruction problem efficiently?



Recap: Shannon-Nyquist sampling

 Shannon-Nyquist-Whittaker theorem (SNWT)

Compressed Sensing: Measure signals at sub-Nyquist rates w/o loss of information?



Compressed Sensing: Intuition

 SNWT: sufficient condition, but not necessary. We can violate it if

 We have prior knowledge

 We change the way we sample



Example

 Bandlimited Signal (< 500 Hz)

 Shannon-Nyquist: N = 1000 samples per second sufficient for any possible
signal

 What if we knew the signal is perfectly sinusoidal?

 N = 3 samples sufficient (conceptually), if placed properly

 Example (jupyter)



Compressed Sensing: Intuition

 SNWT: sufficient condition, but not necessary. We can violate it if

 We have prior knowledge

 We change the way we sample

 Nyquist-Samples often have redundancies

 Signals have structure

 Only a part of the signals is relevant

 Often, prior knowledge is available

 So, we can do it, should we?

 Yes: Sub-Nyquist-Sampling has many practical advantages

 Saving: time, energy, data rate/size

 Very application-specific

PCM => MP3: ca. 1/6*

RAW => JPEG: ca. 1/10-1/50*

Ultrasound: ca. 1/10-1/500

* „lossless“: ca. ½

David Brady: „One can regard the possibility of digital compression as a failure of sensor design. If it is 
possible to compress measured data, one might argue that too many measurements were taken.”



What do we gain?

 Potentially: reduction of measurement time

 Depending on application, e.g. for MRT/CT, imaging

 Potentially: reduction of energy consumption

 (a) Data acquisition itself (e.g. slower system clock)

 (b) Data transmission, esp. for autonomous sensors

 Potentially: reduction of data rate

 Interesting for high rate applications („fast pre-sorting“)

 Reduction of total amount of data (yes, but)

 Better: do not record irrelevant data in the first place



Step 1: Prior knowledge => sparsity

 Basic idea: Set of possible (relevant) signal parts = known. 
Observed signal = combination of a few of these.

Harmonics

= =

Spikes Both!

For example…

=

etc



Step 2: Measurement => Incoherence

 Generalized sampling (linear)

 Special case ideal sample&hold

 How to choose pn(t)?

 Example (jupyter)

=> Incoherence is the key!

=> Randomness as a natural source of incoherence

p(t)



Random Matrices as a Measuring Kernels

 How to build incoherent bases without knowing the basis? 

 “Randomness” is incoherent with any “structure”!

random

vector



Step 3: Reconstruction

 Linearity: sparse model  measurements 

 Mapping from coefficients to measurements is linear. Solve LSE!

(N,1)(M,1) (M,N)

Sub-Nyquist: M < N => underdetermined

But:

=> Seek out sparse solution!

However: This problem is NP hard.



Step 3: Reconstruction

 Linearity: sparse model  measurements 

 Mapping from coefficients to measurements is linear. Solve LSE!

(N,1)(M,1) (M,N)

Sub-Nyquist: M < N => underdetermined

But:

=> Seek out sparse solution!

This problem has efficient solutions.
Under certain conditions, it gives the same solution as the l0 problem.



 Sparse solutions are “on the axes”.

 For p ≤ 1: “arms” of the p-norm balls find them.

 For p ≥ 1: p-norm ball is convex.

 => p = 1 is the best compromise.

Step 3: Geometric intuition

p = 0.25 p = 0.5 p = 1



Escape Velocities for the L1-ball

 Vertices move faster than edges, which move faster than sides

 They correspond to 1-sparse, 2-sparse, and 3-sparse respectively



Identifiability: L0 vs. L1

 In general, for l0 we have

 whereas for l1 the bounds are of the form

l1 “penalty“

NB: there are 2K degrees of freedom!
(support indices + amplitudes)

Kruskal-rank ≥ r if all sets of r
columns are linearly independent



Practical solvers

 Two equivalent formulations

 BPDN1

 LASSO2

 The zoo of algorithms is gigantic. Two commonly found examples

 OMP3: to fit || d – Psi x ||  iteratively, select matching columns in a 
greedy manner, project residual data on the complement subspace 

2LASSO = Least Absolute Shrinkage and Selection Operator

1BPDN  = Basis Pursuit DeNoising

3OMP = Orthogonal Matching Pursuit



OMP example for a three-sparse problem



Practical solvers

 Two equivalent formulations

 BPDN1

 LASSO2

 The zoo of algorithms is gigantic. Two commonly found examples

 OMP3: to fit || d – Psi x ||  iteratively, select matching columns in a 
greedy manner, project residual data on the complement subspace 

 (F)ISTA4: to minimize || d – Psi x ||  , perform gradient steps, regularize 
by (soft) thresholding the coefficients. 

2LASSO = Least Absolute Shrinkage and Selection Operator

1BPDN  = Basis Pursuit DeNoising

3OMP = Orthogonal Matching Pursuit
4FISTA = Fast Iterative Shrinkage and Thresholding Algorithm



Iterative Shrinkage and Thresholding

 To minimize consider its gradient

 Gradient step

 But then x is not sparse. Regularizer? Soft thresholding:

 Fast?

 Apply momentum methods

 Smart step size adaptation

x

 (x)



But how do I measure incoherently?

 That depends…

 Localized signals (spikes) => extended
sampling functions (MLBS, harmonics)

 Random Demodulator, MWC, Fourier sampling

 Highly correlated signals => subsampling

 Spatial / angular subsampling, irregular arrays

 Integral sensors => „Scrambling“

 Single pixel camera, shattered lens imaging, coded aperture

S&H
p(t)



Bigger picture: latent space representation

 Behind the scenes: existence of efficient latent space representation

 In CS obtained through linear projections.

 NB: also a common component in ML/DL (self-attention in 
transformers, latent representation in autoencoders)

 Their advantage: not limited to linear compression

 Autoencoder as a CS sensor?

 Sure, why not. 

 Sensible especially if you can
implement the encoder part
(after freezing the weights) 
in hardware (FPGA?). 

Neural Network (NN) 
autoencoder for front-end 
data compression on an ASIC, 
based on the CMS High-
Granularity Endcap 
Calorimeter (HGCal) at HL-LHC

https://lss.fnal.gov/archive/2020/slides/fermilab-slides-20-121-e.pdf



Applications (Selection)

MRI

firefly [flexpress]

X-ray CT Ultrasound

Hyper-spectral imaging

Kubal et al [2021]

Eldar et al [2015]

Radar

Eldar et al [2017]

etc.



Part 1: Key Take-Aways

 What‘s behind this?

 Shannon-Nyquist is sufficient, but not necessary. With prior
knowledge, perfect reconstruction from fewer samples is possible.

 We formalize „prior knowledge“ through sparsity, as a measure for
signal complexity. 

 How to measure?

 We need incoherent measurement functions.

 Pseudo-randomness can be a source of incoherence.

 How do we reconstruct?

 Look for the one signal that maximizes sparsity.

 Can be solved efficiently through relaxation.

min ||x||0 s.t. y = A x

min ||x||1 s.t. y = A x
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Ultrasound NDT „powered by“ Compressed Sensing

Improve US-NDT inspired by innovations in the CS field

Data reduction Enhanced reconstruction

Speed

Accuracy

 Q1: Temporal sampling: how?
 Fourier subsampling

 Q2: Spatial sampling: where?
 Spatial subsampling für synthetic aperture, sparse array Design

 Q3: Spatial sampling: how?
 Optimal excitation, coded signals

=> Design of Experiment problem: where/how to sample optimally?

=> Some of these can be applied to fully sampled data…
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 In CS we change the way we sample analog signals to avoid capturing redundancy
 reduce data size, data rate, acquisition time, energy

Compressed Sensing for Ultrasound: Intuition 

 Observation 1: A-Scans are often sparse in time domain. Sampling many zeros is redundant
 we can measure in frequency domain instead (i.e., “a few” Fourier coefficients)

 Observation 2: adjacent A-Scans highly correlated
 we can apply subsampling (to some degree)

 Note: requires suitable reconstruction method min || A x – b ||2 + μ ||x||1 (e.g., FISTA)

Subsampling
in space and
frequency
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 Consider the generalized linear sampling operator

 (aWLOG), assume that x(t) is limited in time [0,T]. => WLOG choose bn(t) to be time-limited as well.

 Then, it is easy to see that

i.e., our samples are linear combinations of the Fourier coefficients of x(t). Our choice of bn(t) determines the weights.

 Special case 

Compressed Sensing in Time

Why do we talk about Fourier sensing so much? What is the link?

bn(t)

t

f
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 Bank of analog narrowband (I/Q) filters

Fourier Sampling: Architectures

How to build a Fourier Subsampling Sensor?

exp (j wn t)

 Digital FPGA-based compression
 e.g., FFT+subsel., chirp-Z, Goertzel

Nyquist FPGA

 Modulated Wideband Converter (MWC)
 Delivers an (invertible) linear combination of FC

https://www.weizmann.ac.il/math/yonina/software‐hardware/software/sub‐nyquist‐sampling‐modulated‐wideband‐converter

 Analog computing DFTs, ...

 XG-1 + XF-1 (ASIC)

 …

J. Li et. al., PRIME 2022
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Fourier Sensing vs. Scrambled Fourier Sensing
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Observ. Selection DFT (FFT) ScramblingA‐Scan

Recovery: for 
scrambled Fourier sensing is guaranteed to recover the A‐Scans
with probability

=
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 Build
 Sequence generator for PN sequences pn(t)
 analog multiplier + integrator

 What you get is y = B x, where x are the desired Fourier coefficients and B depends on your sequences

Other variations of Fourier sensing

MWC, why is it related?



25.06.2024Page 8

 With so many architectures in place, what should we choose?
 It depends on the application.

 For analog hardware implementations
 MWC is a tried and tested concept that scales well.
 For very few Fourier coefficients, a direct Fourier sensing may be even simpler.

 For quasi-digital implementations (FPGA)
 If we know where the signal energy focusses => Fourier sensing
 If we don‘t (multiband/wideband) => Scrambled Fourier sensing 
 BTW: Optimal FC selection is an interesting Design of Experiment problem!

When to choose what?
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 Specimen: „MUSE“, recorded with an automated scan
0.5mm grid, 2 MHz, immersion

Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction
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 Specimen: „MUSE“, recorded with an automated scan
0.5mm grid, 2 MHz, immersion

Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction

True SAFT fixed varying
Scrambled Fourier Sensing

Top view
(C image)

Side view
(B image)

nf = 1nt = 2000
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Ultrasound NDT „powered by“ Compressed Sensing

Improve US-NDT inspired by innovations in the CS field

Data reduction Enhanced reconstruction

Speed

Accuracy

 Q1: Temporal sampling: how?
 Fourier subsampling

 Q2: Spatial sampling: where?
 Spatial subsampling für synthetic aperture, sparse array Design

 Q3: Spatial sampling: how?
 Optimal excitation, coded signals

=> Design of Experiment problem: where/how to sample optimally?

=> Some of these can be applied to fully sampled data…
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

A particularly relevant usecase: Full Matrix Capture

Tr
an

sm
itt
er

Receiver
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

 Spatiotemporal compression
 Due to strong spatial correlation: spatial

subsampling as a valid CS strategy

A particularly relevant usecase: Full Matrix Capture
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

 Spatiotemporal compression
 Due to strong spatial correlation: spatial

subsampling as a valid CS strategy
 Sparsity in time => subsampling in frequency

 Overall: (M, M, NT) => (MTX, MRX, NF)

A particularly relevant usecase: Full Matrix Capture

Tr
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Receiver MMRX

M


M
TX
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 3-D separable design
 For each selected TX, use the same 

RX channels and Fourier bins

Spatiotemporal compression strategies

 3-D joint design
 For each selected TX, allow a new set

of RX channels. For each TX and RX, 
allow new Fourier bins

TX

RX

Fourier1s
t c

yc
le

TX

RX

Fourier2n
d 
cy
cl
e

…

TX

RX

Fourier1s
t c
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How to solve the 3-D design of experiment problem?

It depends on the complexity…

Problem sizeM

Exhaustive 
search

Greedy
search

Genetic Algorithms
Annealing

ML‐based:
Learn‐2‐Select

Deep Probabilistic Subsampling Separable design:  ெ
ெ

⋅ ெ
ெ

⋅ ே
ேూ

Joint design  ெ
ெ

⋅ ெ
ெ

ெ
⋅ ே

ேూ

ெெೃ

 Criterion to choose?
 Many choices: task-based end2end, image quality, coherence, …
 Our of our favorites: information theory based criterion: Cramer-Rao Bound

 Quantifies ultimate uncertainty (variance) about scattering location
 For point-wise criteria: Minmax approach => find pattern with best worst-case 

performance

min
ೃ,,

 max
௫,௭ ∈ୖ୍

𝐶𝑅𝐵
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Design of Experiment via Cramér-Rao Bounds (CRBs)

x
z

 Treat the problem as estimation of point scattering locations (x,z):
CRB delivers algorithm-independent bound (“information content”)

 Forward model:
 Estimator:
 Unbiasedness:

 Then:

 We can show that

 CRB can be used to build spatial subselection strategies (exhaustive search / greedy)

(xs, zs)
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Sample result: DOE through CRB minimization

Exhaustive search
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 M = 15 elements
 choose 2 TX, 2 RX

(50x compression)

 1 mm pitch

 c = 5900 m/s

 Gaussian pulse T = 2 μs, PN = 0.1

 Single defect zs = 15 mm

 Gaussian apodization
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Sample result: DOE through CRB minimization

Exhaustive search

 M = 13 elements
 choose 5 TX, 5 RX

(7x compression)

 2 mm pitch

 c = 5900 m/s

 Gaussian pulse T = 2 μs, PN = 0.01

 Single defect zs = 15 mm

 Gausssian apodizationR
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 Separable 2-D design

Greedy selection approach in 2-D

TX RX

(cost)

 Joint 2-D design

TX
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Width of the PSF provides a measure of achievable resolution (in a linear imaging device)
 Cross sections to study vertical / horizontal resolution
 Area under the PSF = „Array Performance Indicator (API)“

How to evaluate?

Criterion: Point Spread Function

1) Generate ideal point scatterer (x,z) 2) Generate B‐Scan (forward model) 3) CS measurement + image reconstruction
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Simulation results

Single defect (to evaluate PSF)

SeparableNyquist Joint

NT = 1525 => NF = 31
M = 16 => MT = 3
M = 16 => MR = 4

c = 5900 m/s
f = 4.54 MHz
λ = 1.9 mm
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Measurement results: test specimen

No compression
(100% of the data)
TFM

>12x spatial comp.
>7x temporal comp.
(1% of the data)
FISTA

Linear ScaleLog Scale
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 Realistic problem sizes (M = 64, 128, …): exhaustive search fails (exponential complexity), greedy methods fail (local minima)

 Idea: leverage power of neural networks to find  good solutions to the non-convex problem

 Problem: selection problem is combinatorial, non-differentiable

 Solution: Gumbel soft-max reparametrization trick
 Rows of Phi: samples of the categorical distribution

 Cost function: final image reconstruction error!

 Estimation method: Learned ISTA

Outlook: DOE via Machine Learning

forward
model

Subsamplingx y

𝚽

ys Reconstruction 𝒙ෝ

Loss function

Gradient

Soft 
max

𝐮  𝐠Gumbel 
weights

image
obs. 

data

rec.

image

trainable

(LISTA layers)

Figure reproduced fromMasuyaka et. al. 2020, LISTA originally due to LeCun et al 2010.
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 Comparing reconstructed images performance

Outlook: DOE via Machine Learning

Comparison with other designs

 Evaluating CNR of 1000 images

Fig. 2. Comparison of reconstructed images Fig. 3. Comparison w.r.t. CNR

Note: 48 choose 24 = 32.2 trillion
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 Compressed Sensing for NDT: very promising!
 Reduction of scan time, data rate, power consumption

 Successfully demonstrated in X-ray CT (inline inspection)

 Ultrasound: 
 data reduction in time and space
 real-time reconstruction for assistance systems

 Challenges ahead, e.g.,
 Complex forward models, e.g., Ultrasound tomography
 data-driven + physics-driven processing
 Lack of training data: artificial training data generation

Summary
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