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Part 1: Compressed Sensing Primer



Part 1: Key Take-Aways

 What‘s behind this?

 „Breaking“ Shannon-Nyquist: how?

 What is the role of sparsity?

 How do we measure?

 What is the role of incoherence?

 What is the role of randomness?

 How do we reconstruct?

 How to find the solution when there are infinitely many?

 How to solve the reconstruction problem efficiently?



Recap: Shannon-Nyquist sampling

 Shannon-Nyquist-Whittaker theorem (SNWT)

Compressed Sensing: Measure signals at sub-Nyquist rates w/o loss of information?



Compressed Sensing: Intuition

 SNWT: sufficient condition, but not necessary. We can violate it if

 We have prior knowledge

 We change the way we sample



Example

 Bandlimited Signal (< 500 Hz)

 Shannon-Nyquist: N = 1000 samples per second sufficient for any possible
signal

 What if we knew the signal is perfectly sinusoidal?

 N = 3 samples sufficient (conceptually), if placed properly

 Example (jupyter)



Compressed Sensing: Intuition

 SNWT: sufficient condition, but not necessary. We can violate it if

 We have prior knowledge

 We change the way we sample

 Nyquist-Samples often have redundancies

 Signals have structure

 Only a part of the signals is relevant

 Often, prior knowledge is available

 So, we can do it, should we?

 Yes: Sub-Nyquist-Sampling has many practical advantages

 Saving: time, energy, data rate/size

 Very application-specific

PCM => MP3: ca. 1/6*

RAW => JPEG: ca. 1/10-1/50*

Ultrasound: ca. 1/10-1/500

* „lossless“: ca. ½

David Brady: „One can regard the possibility of digital compression as a failure of sensor design. If it is 
possible to compress measured data, one might argue that too many measurements were taken.”



What do we gain?

 Potentially: reduction of measurement time

 Depending on application, e.g. for MRT/CT, imaging

 Potentially: reduction of energy consumption

 (a) Data acquisition itself (e.g. slower system clock)

 (b) Data transmission, esp. for autonomous sensors

 Potentially: reduction of data rate

 Interesting for high rate applications („fast pre-sorting“)

 Reduction of total amount of data (yes, but)

 Better: do not record irrelevant data in the first place



Step 1: Prior knowledge => sparsity

 Basic idea: Set of possible (relevant) signal parts = known. 
Observed signal = combination of a few of these.

Harmonics

= =

Spikes Both!

For example…

=

etc



Step 2: Measurement => Incoherence

 Generalized sampling (linear)

 Special case ideal sample&hold

 How to choose pn(t)?

 Example (jupyter)

=> Incoherence is the key!

=> Randomness as a natural source of incoherence

p(t)



Random Matrices as a Measuring Kernels

 How to build incoherent bases without knowing the basis? 

 “Randomness” is incoherent with any “structure”!

random

vector



Step 3: Reconstruction

 Linearity: sparse model  measurements 

 Mapping from coefficients to measurements is linear. Solve LSE!

(N,1)(M,1) (M,N)

Sub-Nyquist: M < N => underdetermined

But:

=> Seek out sparse solution!

However: This problem is NP hard.



Step 3: Reconstruction

 Linearity: sparse model  measurements 

 Mapping from coefficients to measurements is linear. Solve LSE!

(N,1)(M,1) (M,N)

Sub-Nyquist: M < N => underdetermined

But:

=> Seek out sparse solution!

This problem has efficient solutions.
Under certain conditions, it gives the same solution as the l0 problem.



 Sparse solutions are “on the axes”.

 For p ≤ 1: “arms” of the p-norm balls find them.

 For p ≥ 1: p-norm ball is convex.

 => p = 1 is the best compromise.

Step 3: Geometric intuition

p = 0.25 p = 0.5 p = 1



Escape Velocities for the L1-ball

 Vertices move faster than edges, which move faster than sides

 They correspond to 1-sparse, 2-sparse, and 3-sparse respectively



Identifiability: L0 vs. L1

 In general, for l0 we have

 whereas for l1 the bounds are of the form

l1 “penalty“

NB: there are 2K degrees of freedom!
(support indices + amplitudes)

Kruskal-rank ≥ r if all sets of r
columns are linearly independent



Practical solvers

 Two equivalent formulations

 BPDN1

 LASSO2

 The zoo of algorithms is gigantic. Two commonly found examples

 OMP3: to fit || d – Psi x ||  iteratively, select matching columns in a 
greedy manner, project residual data on the complement subspace 

2LASSO = Least Absolute Shrinkage and Selection Operator

1BPDN  = Basis Pursuit DeNoising

3OMP = Orthogonal Matching Pursuit



OMP example for a three-sparse problem



Practical solvers

 Two equivalent formulations

 BPDN1

 LASSO2

 The zoo of algorithms is gigantic. Two commonly found examples

 OMP3: to fit || d – Psi x ||  iteratively, select matching columns in a 
greedy manner, project residual data on the complement subspace 

 (F)ISTA4: to minimize || d – Psi x ||  , perform gradient steps, regularize 
by (soft) thresholding the coefficients. 

2LASSO = Least Absolute Shrinkage and Selection Operator

1BPDN  = Basis Pursuit DeNoising

3OMP = Orthogonal Matching Pursuit
4FISTA = Fast Iterative Shrinkage and Thresholding Algorithm



Iterative Shrinkage and Thresholding

 To minimize consider its gradient

 Gradient step

 But then x is not sparse. Regularizer? Soft thresholding:

 Fast?

 Apply momentum methods

 Smart step size adaptation

x

 (x)



But how do I measure incoherently?

 That depends…

 Localized signals (spikes) => extended
sampling functions (MLBS, harmonics)

 Random Demodulator, MWC, Fourier sampling

 Highly correlated signals => subsampling

 Spatial / angular subsampling, irregular arrays

 Integral sensors => „Scrambling“

 Single pixel camera, shattered lens imaging, coded aperture

S&H
p(t)



Bigger picture: latent space representation

 Behind the scenes: existence of efficient latent space representation

 In CS obtained through linear projections.

 NB: also a common component in ML/DL (self-attention in 
transformers, latent representation in autoencoders)

 Their advantage: not limited to linear compression

 Autoencoder as a CS sensor?

 Sure, why not. 

 Sensible especially if you can
implement the encoder part
(after freezing the weights) 
in hardware (FPGA?). 

Neural Network (NN) 
autoencoder for front-end 
data compression on an ASIC, 
based on the CMS High-
Granularity Endcap 
Calorimeter (HGCal) at HL-LHC

https://lss.fnal.gov/archive/2020/slides/fermilab-slides-20-121-e.pdf



Applications (Selection)

MRI

firefly [flexpress]

X-ray CT Ultrasound

Hyper-spectral imaging

Kubal et al [2021]

Eldar et al [2015]

Radar

Eldar et al [2017]

etc.



Part 1: Key Take-Aways

 What‘s behind this?

 Shannon-Nyquist is sufficient, but not necessary. With prior
knowledge, perfect reconstruction from fewer samples is possible.

 We formalize „prior knowledge“ through sparsity, as a measure for
signal complexity. 

 How to measure?

 We need incoherent measurement functions.

 Pseudo-randomness can be a source of incoherence.

 How do we reconstruct?

 Look for the one signal that maximizes sparsity.

 Can be solved efficiently through relaxation.

min ||x||0 s.t. y = A x

min ||x||1 s.t. y = A x
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Ultrasound NDT „powered by“ Compressed Sensing

Improve US-NDT inspired by innovations in the CS field

Data reduction Enhanced reconstruction

Speed

Accuracy

 Q1: Temporal sampling: how?
 Fourier subsampling

 Q2: Spatial sampling: where?
 Spatial subsampling für synthetic aperture, sparse array Design

 Q3: Spatial sampling: how?
 Optimal excitation, coded signals

=> Design of Experiment problem: where/how to sample optimally?

=> Some of these can be applied to fully sampled data…
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 In CS we change the way we sample analog signals to avoid capturing redundancy
 reduce data size, data rate, acquisition time, energy

Compressed Sensing for Ultrasound: Intuition 

 Observation 1: A-Scans are often sparse in time domain. Sampling many zeros is redundant
 we can measure in frequency domain instead (i.e., “a few” Fourier coefficients)

 Observation 2: adjacent A-Scans highly correlated
 we can apply subsampling (to some degree)

 Note: requires suitable reconstruction method min || A x – b ||2 + μ ||x||1 (e.g., FISTA)

Subsampling
in space and
frequency
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 Consider the generalized linear sampling operator

 (aWLOG), assume that x(t) is limited in time [0,T]. => WLOG choose bn(t) to be time-limited as well.

 Then, it is easy to see that

i.e., our samples are linear combinations of the Fourier coefficients of x(t). Our choice of bn(t) determines the weights.

 Special case 

Compressed Sensing in Time

Why do we talk about Fourier sensing so much? What is the link?

bn(t)

t

f
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 Bank of analog narrowband (I/Q) filters

Fourier Sampling: Architectures

How to build a Fourier Subsampling Sensor?

exp (j wn t)

 Digital FPGA-based compression
 e.g., FFT+subsel., chirp-Z, Goertzel

Nyquist FPGA

 Modulated Wideband Converter (MWC)
 Delivers an (invertible) linear combination of FC

https://www.weizmann.ac.il/math/yonina/software‐hardware/software/sub‐nyquist‐sampling‐modulated‐wideband‐converter

 Analog computing DFTs, ...

 XG-1 + XF-1 (ASIC)

 …

J. Li et. al., PRIME 2022
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 Architectures

Fourier Sensing vs. Scrambled Fourier Sensing
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A‐Scans Fourier
(FFT) Select

Energy

Uniform

Random
(Energy)

A‐Scans Fourier
(FFT) SelectScram‐

blng
Uniform

Observ. Selection DFT (FFT) ScramblingA‐Scan

Recovery: for 
scrambled Fourier sensing is guaranteed to recover the A‐Scans
with probability

=
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 Build
 Sequence generator for PN sequences pn(t)
 analog multiplier + integrator

 What you get is y = B x, where x are the desired Fourier coefficients and B depends on your sequences

Other variations of Fourier sensing

MWC, why is it related?



25.06.2024Page 8

 With so many architectures in place, what should we choose?
 It depends on the application.

 For analog hardware implementations
 MWC is a tried and tested concept that scales well.
 For very few Fourier coefficients, a direct Fourier sensing may be even simpler.

 For quasi-digital implementations (FPGA)
 If we know where the signal energy focusses => Fourier sensing
 If we don‘t (multiband/wideband) => Scrambled Fourier sensing 
 BTW: Optimal FC selection is an interesting Design of Experiment problem!

When to choose what?
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 Specimen: „MUSE“, recorded with an automated scan
0.5mm grid, 2 MHz, immersion

Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction
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 Specimen: „MUSE“, recorded with an automated scan
0.5mm grid, 2 MHz, immersion

Some numerical results: Scrambled Fourier Sensing + FISTA reconstruction

True SAFT fixed varying
Scrambled Fourier Sensing

Top view
(C image)

Side view
(B image)

nf = 1nt = 2000
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Ultrasound NDT „powered by“ Compressed Sensing

Improve US-NDT inspired by innovations in the CS field

Data reduction Enhanced reconstruction

Speed

Accuracy

 Q1: Temporal sampling: how?
 Fourier subsampling

 Q2: Spatial sampling: where?
 Spatial subsampling für synthetic aperture, sparse array Design

 Q3: Spatial sampling: how?
 Optimal excitation, coded signals

=> Design of Experiment problem: where/how to sample optimally?

=> Some of these can be applied to fully sampled data…
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

A particularly relevant usecase: Full Matrix Capture

Tr
an

sm
itt
er

Receiver
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

 Spatiotemporal compression
 Due to strong spatial correlation: spatial

subsampling as a valid CS strategy

A particularly relevant usecase: Full Matrix Capture
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sm
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Receiver MMRX

M


M
TX
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 Elements transmit sequentially, receive in parallel

 For M elements:
 M measurement cycles
 M² A-Scans (M x M x NT samples)

 Drawbacks:
 M cycles need time
 M parallel RF chains: hardware complexity
 Data size O(M²)

 Spatiotemporal compression
 Due to strong spatial correlation: spatial

subsampling as a valid CS strategy
 Sparsity in time => subsampling in frequency

 Overall: (M, M, NT) => (MTX, MRX, NF)

A particularly relevant usecase: Full Matrix Capture

Tr
an

sm
itt
er

Receiver MMRX

M


M
TX
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 3-D separable design
 For each selected TX, use the same 

RX channels and Fourier bins

Spatiotemporal compression strategies

 3-D joint design
 For each selected TX, allow a new set

of RX channels. For each TX and RX, 
allow new Fourier bins

TX

RX

Fourier1s
t c

yc
le

TX

RX

Fourier2n
d 
cy
cl
e

…

TX

RX

Fourier1s
t c

yc
le

TX

RX

Fourier2n
d 
cy
cl
e

…
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How to solve the 3-D design of experiment problem?

It depends on the complexity…

Problem sizeM

Exhaustive 
search

Greedy
search

Genetic Algorithms
Annealing

ML‐based:
Learn‐2‐Select

Deep Probabilistic Subsampling Separable design:  ெ
ெ౐

⋅ ெ
ெ౎

⋅ ே౐
ேూ

Joint design  ெ
ெ౐

⋅ ெ
ெ౎

ெ೅
⋅ ே౐

ேూ

ெ೅ெೃ

 Criterion to choose?
 Many choices: task-based end2end, image quality, coherence, …
 Our of our favorites: information theory based criterion: Cramer-Rao Bound

 Quantifies ultimate uncertainty (variance) about scattering location
 For point-wise criteria: Minmax approach => find pattern with best worst-case 

performance

min
௠ೃ೉,௠೅೉,௡೅

 max
௫,௭ ∈ୖ୓୍

𝐶𝑅𝐵
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Design of Experiment via Cramér-Rao Bounds (CRBs)

x
z

 Treat the problem as estimation of point scattering locations (x,z):
CRB delivers algorithm-independent bound (“information content”)

 Forward model:
 Estimator:
 Unbiasedness:

 Then:

 We can show that

 CRB can be used to build spatial subselection strategies (exhaustive search / greedy)

(xs, zs)
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Sample result: DOE through CRB minimization

Exhaustive search

R
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 M = 15 elements
 choose 2 TX, 2 RX

(50x compression)

 1 mm pitch

 c = 5900 m/s

 Gaussian pulse T = 2 μs, PN = 0.1

 Single defect zs = 15 mm

 Gaussian apodization

103

102

101

100

15 mm
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Sample result: DOE through CRB minimization

Exhaustive search

 M = 13 elements
 choose 5 TX, 5 RX

(7x compression)

 2 mm pitch

 c = 5900 m/s

 Gaussian pulse T = 2 μs, PN = 0.01

 Single defect zs = 15 mm

 Gausssian apodizationR
oo
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 Separable 2-D design

Greedy selection approach in 2-D

TX RX

(cost)

 Joint 2-D design

TX
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Width of the PSF provides a measure of achievable resolution (in a linear imaging device)
 Cross sections to study vertical / horizontal resolution
 Area under the PSF = „Array Performance Indicator (API)“

How to evaluate?

Criterion: Point Spread Function

1) Generate ideal point scatterer (x,z) 2) Generate B‐Scan (forward model) 3) CS measurement + image reconstruction
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Simulation results

Single defect (to evaluate PSF)

SeparableNyquist Joint

NT = 1525 => NF = 31
M = 16 => MT = 3
M = 16 => MR = 4

c = 5900 m/s
f = 4.54 MHz
λ = 1.9 mm
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Measurement results: test specimen

No compression
(100% of the data)
TFM

>12x spatial comp.
>7x temporal comp.
(1% of the data)
FISTA

Linear ScaleLog Scale
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 Realistic problem sizes (M = 64, 128, …): exhaustive search fails (exponential complexity), greedy methods fail (local minima)

 Idea: leverage power of neural networks to find  good solutions to the non-convex problem

 Problem: selection problem is combinatorial, non-differentiable

 Solution: Gumbel soft-max reparametrization trick
 Rows of Phi: samples of the categorical distribution

 Cost function: final image reconstruction error!

 Estimation method: Learned ISTA

Outlook: DOE via Machine Learning

forward
model

Subsamplingx y

𝚽

ys Reconstruction 𝒙ෝ

Loss function

Gradient

Soft 
max

𝐮 ൅ 𝐠Gumbel 
weights

image
obs. 

data

rec.

image

trainable

(LISTA layers)

Figure reproduced fromMasuyaka et. al. 2020, LISTA originally due to LeCun et al 2010.
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 Comparing reconstructed images performance

Outlook: DOE via Machine Learning

Comparison with other designs

 Evaluating CNR of 1000 images

Fig. 2. Comparison of reconstructed images Fig. 3. Comparison w.r.t. CNR

Note: 48 choose 24 = 32.2 trillion
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 Compressed Sensing for NDT: very promising!
 Reduction of scan time, data rate, power consumption

 Successfully demonstrated in X-ray CT (inline inspection)

 Ultrasound: 
 data reduction in time and space
 real-time reconstruction for assistance systems

 Challenges ahead, e.g.,
 Complex forward models, e.g., Ultrasound tomography
 data-driven + physics-driven processing
 Lack of training data: artificial training data generation

Summary
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