Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the EUROPEAN RESEARCH EXECUTIVE AGENCY. Neither the European Union nor the EUROPEAN RESEARCH EXECUTIVE AGENCY can be held responsible for them.
USES of novel UltraSonic and Seismic Embedded Sensors for the non-destructive evaluation and structural health monitoring of infrastructure and human-built objects
Subscribe to our newsletter to receive the latest news of the USES2 project.
About USES2
Detecting degradation that endangers the safety and impairs availability of infrastructure and components is currently the task of schedule driven Non-Destructive Evaluation (NDE), this process is however costly and disruptive. The attractive alternative is to use condition based Structural Health Monitoring (SHM). Current, SHM typically uses sensors that provide local information only, which may be insufficient for detecting interior degradation or require very dense networks. Furthermore, the performance of both in-situ sensing systems and algorithms to process and interpret the sensor data is reduced when subject to Environmental and Operational Conditions (EOC). This limits their large-scale deployment.
USES2 will develop and combine novel emerging sensing technologies (optical fibre and wireless pieozoelectric sensors), advanced processing (compressed sensing, artificial intelligence) and full-mechanical-waveformbased imaging to tackle these issues. Key to this cross-disciplinary work is a new generation of researchers with skills across sensing and signal processing. They will be trained with a unique combination of “hands-on” multidisciplinary research demonstrators, industrial placements, and courses /workshops on scientific and transferable skills. All of which is facilitated by the broad intersectoral composition of the consortium.
USES2 will produce world class researchers expert in innovative sensing solutions, advanced mechanical wave processing and robust EOC compensation methods. Their skills will be embodied in a series of laboratory demonstrators and in situ industrially relevant experiments spanning three key sectors of European industry: energy [power plants (nuclear, wind), hydrogen storage, pipeline networks for fuel exploration and transport], mobility for citizens (aircraft, automotive industry) and construction (urban subsurface soil, infrastructures).
Project Coordinator
Université Gustave Eiffel

Breaking News - Industry Days#1

Funding
This project has received funding from the EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) under the Marie Skłodowska-Curie grant agreement No 101072599.

Project Number: 101072599
Call: HORIZON-MSCA-2021-DN-01
Type of action: HORIZON TMA MSCA Doctoral Networks
Granting authority: European Research Executive Agency
Period: 1st March 2023 - 28th February 2027
EU contribution: 2 657 779 €